
gigapxy(1) gigapxy manual page gigapxy(1)

NAME
Gigapxy - an inter-protocol data stream relay and proxy.

DESCRIPTION
Gigapxy pipes data channels to corresponding clients; either of the two endpoints may be a network socket
or a file.

Basic terminology and use cases
Gigapxy uses the term channel for a data source and client for a destination. This terminology has roots in
IPTV (IP television) operations: an IPTV provider gives its service subscribers (clients) access to TV/video
channels via an IP-based network.

A common scenario using Gigapxy would be feeding (UDP) data from M multicast channels to N (TCP)
clients/subscribers: media players, tools such as wget, curl, etc. A client, in fact, could be any application
issuing an appropriate HTTP request.

Gigapxy is designed to serve many clients per channel, efficiently and economically. A built-in caching
mechanism allows new clients to start reading cached (channel) data at once, minimizing the delay associ-
ated with making a new connection or a multicast group subscription. For the end user that means that
changing IPTV channels becomes very fast.

Application modules
Gigapxy is a server application; its services include relaying data to to clients and performing administra-
tive tasks, such as reporting application statistics in various formats.

The two core modules of Gigapxy are:

gws (Gigapxy Web Service)
processes, validates and dispatches user requests, handles administrative tasks;

gng (Gigapxy Engine)
serves data to clients.

The two modules run as separate processes, a single instance of gws(1) controls a number (N >= 1) of
gng(1) processes.

gws(1) processes and validates a user request for data, sets up input and output ends of associated data
streams, then dispatches the request to the appropriate gng(1) instance to handle data transfer. If gws
receives an administrative request, it may service it locally or relay to an appropriate gng.

A gng(1) , on its end, is fully dedicated to channel-to-client data transfer; it is not to be affected by delays
associated with HTTP request processing or even a crash of the controlling gws(1) instance.

gng reports to gws the events for the clients and channels that it is handling; the reports let gws track the
data streams and load-balance requests between multiple gng instances.

gng also (if configured) regularly updates traffic performance statistics (TPS) that gws needs to produce
traffic reports.

SETTING UP
Gigapxy is built as a single executable binary (named gigapxy), with two soft links to it set up by the instal-
lation process, the links denote the modules: gws and gng.

To see an overview of command-line parameters accepted by a module, run it with one of the following

Version 0.2 June 27, 2014 1

gigapxy(1) gigapxy manual page gigapxy(1)

command-line parameters: -h, -?, --help or --options

As one might expect, a command-line parameter always overrides the corresponding setting in the configu-
ration.

Please note that running a module without any option is NOT equivalent to requesting help summary; it
will just run the module in default configuration.

Most of Gigapxy’s parameters should be specified in module-designated config files. The following are the
default locations for configuration files: Gigapxy will look for either gws.conf or gng.conf (depending on
the module being launched) and then (if neither could be opened) for gigapxy.conf in each of those loca-
tions unless a full path is specified at command line.

(current directory)

/etc

/usr/local/etc

If configuration file path is specified at command line, the module will only try to open that a file at that
particular path.

The installation provides ’/etc/gigapxy.conf’ as the default configuration file containing sections for both
gws and gng. However, each module’s section could be put into a separate file and passed to the module via
the ’-C|--config’ command-line parameter.

The documentation includes a fully annotated configuration file, with every possible option specified and
commented on, at:

/usr/share/doc/gigapxy/examples/gigapxy-commented.conf on Linux, or at the corresponding /usr/local
location on FreeBSD.

PREPARING T O RUN
Gigapxy can run in a terminal or as a daemon. To run as a daemon, it must be started with root privileges.
Root privileges are not required after a short period of initialization; therefore it is suggested that the mod-
ule run in a non-privileged mode, under a non-root user. The default configuration has application mod-
ules (started as root) switch to non-privileged gigapxy account, which is automatically created at installa-
tion point with the home directory of /var/run/gigapxy. The user is not removed at de-installation for
safety reasons.

Log-file directory /var/log/gigapxy is automatically created at the installation point. No module will start
without being able to write into a log file.

NB: It makes sense to have your logs reside in a designated partition that is not shared with your system’s
root directory. Setting up for log-rotation and archival are two related tasks that must not be overlooked.

It is suggested that all module instances write their own log, although writing into a shared log is also pos-
sible.

System log is automatically updated when a module runs as a daemon.

Version 0.2 June 27, 2014 2

gigapxy(1) gigapxy manual page gigapxy(1)

RUNNING
The very base topology of Gigapxy is running one controlling gws hooked up with a single gng. This
would utilize only two CPUs/cores, so you might want to add more gng instances to spread channels across
available cores. Mind that all clients of a single channel go to the one designated (by their controlling gws)
gng. If you want to balance clients of the same channel across multiple gng’s, you would have to introduce
more gws instances, each of them handling its portion of the channel’s load.

The only rule to follow starting up modules is that a gws process should always start before any gng
instances it controls. (You could test-run your topology in separate terminal windows to see how it works.)
An example control script has been provided at:

/usr/share/gigapxy/scripts/gigapxy.sh on Linux or at the corresponding /usr/local location on FreeBSD

Before the configuration is finalized and the process is not (yet) fully automated, the two command-line
options: -T and -v may be quite helpful. (See command-line options.)

The -v option works cummulatively: it allows for up to -vvvv to specify the deepest (debug) level of ver-
bosity in the log output. If you are testing a particular feature or trying to reproduce a bug, this is the way to
run for the log to be most helpful to the support team.

NB: Debug logs grow VERY large very fast so please make sure you have enough space in your dedi-
cated log partition and log rotation set up. gng is especially verbose in its debug output so take extra cau-
tion there: provide both the space and the log storage fast enbough to handle a lot of writing without serious
performance degradation.

For the -T option, bear in mind, that invoking it will disable switching to an alternate (non-privileged) user
from root.

Running Gigapxy is trivial once the configuration has been properly set up: launch the modules individu-
ally or via a control script.

Gigapxy can be considered running and fully functional when a gws(1) is running with at least one gng(1)
controlled by it. A gws(1) may run on its own without a single gng(1) attached but it will not be fully func-
tional: it will NOT be accepting user requests for data until a gng connects. You could still check on it by
requesting a status report via admin port.

A gws(1) shutting down gracefully (after one of the quitP signals: TERM, QUIT or INT will also shut
down all its engines. This behavior could be overridden in the configuration to safeguard against abnormal
situations or bugs causing a graceful exit(3) instead of a crash. Please refer to the gws.conf(5) for details.

If a gws(1) crashes, the subservient engines will not shut down at once but after N attempts to re-connect
with a gws(1) at the same (socket) path. The associated parameters are also configurable.

Requesting data (user requests)
gws(1) has listeners on two ports for user and admin HTTP requests. The user-request formats are:

URIs for multicast sources support SMM (source-specific multicast) via
{source-addr}:{mcast-addr}:{mcast-port} specifier.

Version 0.2 June 27, 2014 3

gigapxy(1) gigapxy manual page gigapxy(1)

a) http://{addr}:{gws_port}/{cmd}/{mcast-addr}:{mcast-port} OR
http://{addr}:{gws_port}/{cmd}/{src-addr}@{mcast-addr}:{mcast-port}

WHERE
{addr}:{gws_port} ::= IPv4/6 address of the user-request listener;
{cmd} ::= udp;
{mcast-addr}:{mcast-port} ::= IPv4/6 address of the mulitcast group;
{src-addr} ::= source address for (SSM).

NB: IPv6 addresses are always specified as [{addr}]:port, as in [ff18::1]:5056.

This (udpxy-style) type of request specifies multicast group as the data source and the requesting HTTP
connection as the destination.

b) http://{addr}:{gws_port}/src/{channel-uri}/dst/{client-uri}

WHERE
{addr}:{gws_port} ::= IPv4/6 address of the user-request listener;
{channel-uri} ::= URI for the channel (see format below);
{client-uri} ::= URI for the client (see format below);

URI format: {protocol}://{path}?{query}

c) http://{addr}:{gws_port}/${alias}

This type of request uses a channel alias: a dollar-sign prefixed name that resolves to a URL for a channel
within a group. Refer to channels.conf(5) for details on configuring channels using aliased groups.

Supported protocols are: FILE, TCP, UDP, HTTP. Below are a few examples of requests using different
protocols and formats:

a) http://acme.com:8080/src/file:///opt/data/somefile.dat/dst/?a=bb&c=dd

gws(1) is listening on port 8080 at acme.com

Channel is a file with the full path: /opt/data/somefile.dat

The request has an associated query ’a=bb&c=dd’ which could be used to specify additional
parameters for the session.

Client (dst) is not specified, which defaults to the connection of the HTTP request.

The contents of /opt/data/somefile.dat will be sent to the client; at EOF point the engine will wait
(in a non-blocking manner) for the file to expand (be appended with more data) and, if the file
gets expanded, will send the new data to the client. If the file does not expand within a certain
(configurable) time period, the channel will time out and the clients’ sessions will be terminated.

b) http://acme.com:8080/src/udp://[ff18::1]:5056/dst/file:///opt/data/somefile.dat

Channel is a multicast group with IPv6 address ff18::1, port 5056

Client is a file with the path: /opt/data/somefile.dat

The engine will write any data arriving for the channel (multicast group) into the named file. The

Version 0.2 June 27, 2014 4

gigapxy(1) gigapxy manual page gigapxy(1)

channel may time out if no data arrive within a certain time period, in which case the session will
be closed. If there’s an error writing to the destination file, the session will also end.

c) http://acme.com:8080/src/udp://[ff18::1]:5056/dst/

d) http://acme.com:8080/udp/[ff18:1]:5056

The two requests above are equivalent (just stated in two different formats).

Both specify channel as the multicast group [ff18:1]:5056 and the (requesting) HTTP connection
as the client. A timeout may occur on either of the network connections here, either of the two
connections could also be broken by the peer, thus terminating the session.

e)
http://acme.com:8080/src/http://10.0.1.12:4056/udp/224.0.2.26:4033?kk=yy/dst/tcp://192.168.12.10:5051?mm=ff

specifies that channel data comes as a response to the HTTP GET /udp/224.0.2.26:4033?kk=yy
request sent to http://10.0.1.12:4056. Whatever application handles HTTP requests at that
address is expected to reply with a data stream destined to a TCP socket connected to the address:
192.168.12.10:5051. This session also has an associated query: ´mm=ff´, which could have a
meaning in the context of the given session.

This request underlines Gigapxy’s capability to cascade or ’daisy-chain’ requests, and, therefore,
link its instances or itself up with other applications compliant with either of the two request for-
mats (’udp-channel’ and ’src-dst pair’). A chain, such as, for instance, udpxy -> gigapxy ->
udpxy -> media player, is made possible by this functionality.

f) http://acme.com:8080/$TV9

requests to use an aliased channel TV9 as the source, the destination defaulting to the requesting
connection.

g) http://acme.com:8080/src/$TV9?key=BF094744c5/dst

requests the same aliased channel in gigapxy format and appends the key parameter to the URL
the alias resolves to.

h) http://acme.com:8080/udp/10.0.11.26@224.0.2.26:5050 OR
http://acme.com:8080/src/udp://10.0.11.26@224.0.2.26:5050/dst/

request (via SSM) a multicast channel at 224.0.2.26:5050 coming from 10.0.11.26, taking advan-
tage of IGMPv3.

For further details on aliased channels one should refer to channels.conf(5)

HTTP URL r e-direction
A client could be re-directed to an alternate source if the requested channel happens to be unavailable at
the time. gws would reply with HTTP 302 (Moved Temporarily) in the hope that the client software recog-
nizes the code and would follow the re-direction link. gws performs a basic comparison check to ensure
that there’s no re-direction loop, yet the responsibility (re-direction loop detection & prevention) lies on
the client side.

Version 0.2 June 27, 2014 5

gigapxy(1) gigapxy manual page gigapxy(1)

HTTP HEAD support
HTTP HEAD requests can be used to check for channel availability. gws treats HTTP HEAD in the same
manner as it would treat a GET, with the exception that it would not send back any channel data; neither
would it forward any information to a gng. Re-direction, however, is still performed as appropriate.

Administrati ve requests
Gigapxy listens on a dedicated TCP port for administrative requests. The request types are as below:

a) reports: http://{addr}:{port}/report?type={type}&format={format}&cached={0|1}

WHERE:

{type} ::= traffic|tps

{format} ::= html|web|xml

Gigapxy supports the following types of reports:

TPS (traffic, tps) - throughput statistics on active channels and clients.

The available report-output formats are:

HTML (html, web) - output as an HTML/web page.

XML (xml) - output as an XML page.

Other popular formats, such as json are also planned for the future.

Note: generation of throughput statistics should be enabled in appropriate config settings for TPS reports to
work.

Caching: gws(1) may cache its reports for a certain time period, defined as ws.report.cache_timeout_ms
in gws.conf(5) The request URL may request invalidation of the cache by using cached=0 parameter. NB:
this is to be used when getting the most actual data is critical. In all other cases, using cached reports would
be a wiser choice, saving CPU resources when many report requests come in close proximity.

b) drop/disconnect a channel or a client: http://{addr}:{port}/drop?channel={chan-
nel_tag}&client={client_tag}

WHERE:

{channel_tag} is the name tag for the channel;

{client_tag} is the name tag for the client (within the given channel). If client parameter is missing, then
channel={channel_tag} with all its clients will be disconnected.

Both channel and client must be specified exactly as TPS reports display them. For instance, for a multicast
channel tagged as UDP://224.0.12.15:7010 (please do mind that URI parameters, such as authorization cre-
dentials etc., are not included) and a client tagged as TCP://192.168.10.15:50905, with gws listening for
admin requests on 127.0.0.1:4047, the request:

http://127.0.0.1:4047/drop?channel=UDP://224.0.2.15:7010&client=TCP://192.168.10.15:50905 will
drop (disconnect) only the client, leaving the channel up and running, whereas

Version 0.2 June 27, 2014 6

gigapxy(1) gigapxy manual page gigapxy(1)

http://127.0.0.1:4047/drop?channel=UDP://224.0.2.15:7010 would drop (disconnect) all clients within the
channel and cancel/disconnect the channel’s inbound data stream.

gws, upon receiving a ’drop’ request, looks up the channel record (but not the client), locates the appropri-
ate gng and relays the request to it. It is not the responsibility of gws to fulfill the request (since gng han-
dles it from there), so gws would report success (HTTP 200 OK) as soon as the request is sent to gng. If the
client in the request is invalid, the error will only be discovered by gng which sends no feedback to the
request’s origin. Should the request be successfully fulfilled by gng, it will report client/channel drops to
gws, resulting in appropriate entries added to the access log (see gws.conf(5) for more info on gws logs).

c) ping/status of the service: http://{addr}:{port}/ping or http://{addr}:{port}/status; status keyword is sup-
ported to comply with the udpxy status command (which, in effect, resulted in a status report), which is
NOT the equivalent ping, nevertheless, was used to check if the service is up; the preferred keyword for
gigapxy is, of course, ping. gws returns HTTP 200 whenever it receives the command.

d) disconnect all clients and channels: http://{addr}:{port}/reset - this will have gws send SIGUSR2 to all
attached gng instances. SIGUSR2 directs a gng to drop all its channels and clients.

AUTHORIZA TION
Gigapxy utilizes authorization helpers - user-supplied components - communicating with gws(1) via
STDIN and STDOUT. With authorization enabled (via config), each user request results in an authoriza-
tion request sent to a vacant auth helper. An illustrative example of a helper is prodvided at:

/usr/share/gigapxy/scripts/gauth.sh

An authorization request is a text string terminated by CR/LF, with the following fields separated by white-
space:

[ID] [peer] [sour ce] [destination] [CRLF]

[ID] is A{num}, where {num} is a sequence number generated by gws; Example: A3404;

[peer] is combined IP address and port of the remote host requesting access; Example:
104.12.33.67:12301;

[source]: URI of the channel being requested and the authorization token; $Example:
udp://224.0.2.12:5011?auth=ef031204ba0c.

NB: The format of the authorization token is not dictated in any way by gws: it’s a mere convention
between the client requesting access and the (user-defined) authorization logic embedded in the helper. gws
passes what it recognizes as source to auth helper as is.

[destination] is URI for the destination or ’-’ for destination being the requesting TCP connection; Exam-
ple: -;

[CRLF] is a sequence of two symbols with ASCII codes 0x0d and 0x0a.

The example request will be as below:

A3404 104.12.33.67:12301 udp://224.0.2.12:5011?auth=ef031204ba0c -

The helper validates the request and responds in the following format:

[ID] [r esult] [CRLF]

Version 0.2 June 27, 2014 7

gigapxy(1) gigapxy manual page gigapxy(1)

[ID] is the request ID, i.e. A3404 in our case.

[r esult] is a numeric value that gws recognizes as an approval code if 0 (zero) and as denial otherwise.

Therefore, an approval for the request above should look as:

A3404 0

NB: A denial code could be arbitrary as long as it is non-zero; gws logic recognizes no difference between
1 and 210045, they both indicate denial of access and result in the 403 Forbidden HTTP response being
forwarded to the client; then the client session ends.

Since gws does not have any guarantee that a helper would not block on a request, it times out auth
requests using the applicable settings for user requests (please see gws.conf(5) for the particular settings). If
a client/user request times out on handling an authorization task, the engaged auth helper gets kill(2) -ed.

Do make sure your time-out settings for user requests are well-balanced to allow ample time for auth
requests to complete gracefully. Also, ensure that enough auth helpers are running to distribute requests to.
gws(1) issues warnings about a slow auth helper when it detects one (at a time-out), a sequence of such
warnings would indicate a mis-comfiguration issue.

Expiration date for trial v ersions of gigapxy
Please not that all beta versions come with an expiration date that is displayed in round brackets in applica-
tion info. Running a gigapxy module (gws or gng) with -V option will display the application info line.
Gigapxy will not run past the expiration date or if it cannot reliably tell what time it is, by contacting an
NTP service over the internet. This feature is not applicable to non-trial (commercially licensed) versions
of gigapxy.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gws(1),gng(1),gws.conf(5),gng.conf(5),channels.conf(5),gigapxy.auth(5)

Version 0.2 June 27, 2014 8

gws(1) gws (Gigapxy web service) manual page gws(1)

NAME
gws - Gigapxy web service daemon.

SYNOPSIS
gws [-h?TvVqkU] [-C config_file] [-l logfile}] [-p pidfile]

DESCRIPTION
gws is the front-end module of Gigapxy. It handles user and administrative requests submitted via HTTP
protocol. The format of requests is described in the gigapxy(1) manpage.

gws dispatches user requests to Gigapxy engines, instances of a gng(1) daemon. At least one gng should
be running for Gigapxy to accept requests for data. A gws can control up to 64 engines.

gws takes its parameters from a configuration file, which is either gws.conf or gigapxy.conf by default and
can contain sections for any or all gigapxy modules. gws will look for the default configuration in a) cur-
rent directory; b) /etc; c) /usr/local/etc. Path to a specific configuration file could be given at com-
mand-line (see OPTIONS). Configuration options for gws are described in detail in gws.conf(5) man-
page.

gws rereads its configuration in response to SIGHUP. gws will force-rotate its log in response to
SIGUSR1.

OPTIONS
gws accepts the following options:

-h, --help, -?, --options
output brief option guide. This is NOT the behavior when run without parameters.

-C, --config path
specify configuration file.

-l, --logfile path
specify log file.

-p, --pidfile path
specify pid file.

-T, --term
run as a terminal (non-daemon) application. This is the default behavior when gws is run by a
non-privileged user. -T could be specified when run as root in order NOT to become a daemon,
for instance, for debugging purposes.

-v, --verbose
set the level of verbosity in the output. This option could be repeated to get to the desired level,
which is 0, unless the option is used at least once. Level 0 will reduce output to the very essential
log entries of NRM (normal) priority; level 1 will set verbosity to output to INF (info): suitable
for monitoring but not debugging; level 2 will enable DBG (debug) level for most (but not all)
application modules; level 3 will set DBG (debug) for all modules. This switch has a rather
inflexible nature, for more precise setting of log levels please use config settings alone.

-V, --version
output application’s version and quit.

-q,--quiet
send no output to terminal. This is to supress any output normally sent to standard output or error
streams. Unless specified, when run from a non-privileged account, gws will mirror diagnostic

Version 0.1 April 2, 2014 1

gws(1) gws (Gigapxy web service) manual page gws(1)

messages sent to the log (as specified with the -l option) to standard output.

-k,--oldmcast
use legacy multicast API. gws uses newer protocol-agnostic API by default, some (older) sys-
tems may not fully support it or exhibit erroneous behavior when using it. Enabling this option
will have gws use the older protocol-specific multicast API.

-U,--unauth
Disable authorization (if configured). This option allows a quick command-line override to dis-
able whatever authorization method has been configured.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigapxy(1),gng(1),gws.conf(5),gng.conf(5)

Version 0.1 April 2, 2014 2

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

NAME
gws.conf - Gigapxy web service daemon configuration file.

DESCRIPTION
gws(1) is the gigapxy(1) web service daemon, responsible for processing incoming requests. The configu-
ration file contains the parameters read by the daemon at launch. The config file is human-readable and is
in libconfig format. An example of a gws.conf is provided with the installation; please refer to it or the lib-
config manual.

Once the parameters are read by gws, the daemon operates with those values util the configuration is
re-loaded in response to SIGHUP.

All gws(1) settings beginning with the ws. prefix, as in ws.section.param. A configuration file could contain
other (non-gws) settings too; gws will simply disregard those.

The configuration settings are given below. The default value for a setting is given in square brackets as
[default]. Parameters without default values are mandatory.

ws.ng.socket_path = path [/var/run/gpx-ngcomm.socket]
is the domain socket path for communications between gws and the attached gng’s.

ws.ng.force_shutdown = true | false [true]
If true, gws will attempt to shut down (kill -SIGTERM) all attached ng’s on shutdown.

ws.ng.pick_method = method [round-robin]
gng selection method, using one of the following criteria: round-robin - next engine from the (circular)
list; min-channels - engine with the minimum channels; min-clients - engine with the minimum clients.

ws.ng.accept_min_attached = num [1]
The number of NGs that should be attached to this gws before it can accept user requests.

ws.split_channels = true | false [false]
When set to true, gws chooses a gng for every new client before anything else, using ws.ng.pick_method.
This allows to load-balance a single channel to multiple gng-s/cores. The default method (with this setting
off) matches one channel to a particular gng: all clients for that channel get handled by the initially-
assigned gng.

ws.log.*
Below are the settings pertaining to different modules within gws(1). Setting verbosity for one of those
allows to variate debug log detailization for specific modules within the program. Not every module though
has a specific level attributed to it; most default to the non-specific common level.

The follow settings are for the application (debug) log. Application log captures various actions as they
happen without any specific focus.

ws.log.level_default = err| crit| warn| norm| info| debug [info]
Defines the level of verbosity for the log across all modules.

Version 0.3 January 12, 2016 1

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

ws.log.level_common = err| crit| warn| norm| info| debug [info]
Sets the level of verbosity for non-specific modules. NB: setting this level to debug will result in a VERY
verbose output.

ws.log.level_syscall = err| crit| warn| norm| info| debug [info]
Sets the level of verbosity for system call and libc wrappers.

ws.log.level_bufd = err| crit| war n| norm| info| debug [info]
Sets the level of verbosity for (stream) buffer management operations.

ws.log.level_tput = err| crit| warn| norm| info| debug [info]
Sets the level of verbosity for operations on throughput statistics.

ws.log.file = path
Full path to debug log.

ws.log.max_size_mb = num [16]
Maximum file size (in Mb, i.e. 1048576-byte chunks). Log is rotated when this size is exceeded. gws will
force-rotate its current log in response to SIGUSR1.

ws.log.max_files = num [16]
Maximum number of files to rotate to. The next rotation after this limit removes the oldest rotated log.

ws.log.time_format = local| gmt| raw| raw_mono| no_time| [local]
Sets format to display timestamps for log entries. local will loglocal-timezone specific time in YYYY-
MM-DD HH24:MI TZ format. gmt will log GMT time in the same human-readable format as local; raw
logs high-resolution time as the number of seconds.nanoseconds since the Epoch (1970-01-01 00:00:00
UTC); raw-mono logs system-specific monotonic time (used for timespan measurement, not correlated to
clock time). no_time logs no time at all.

ws.log.show_pid = true|false [true]
Display PID as a log entry field.

ws.log.enable_syslog = true|false [true]
Write errors, warnings and critical messages to syslog(2).

ws.access_log.*
The following settings are for gws access log, serving a specific purpose of capturing channel and client
session statistics. Access log is updated every time a new data stream is opened or closed. The entry types
are:

OPEN_CHANNEL channel_address
gws opens a connection to the given channel. Data starts flowing from the channel (specified by chan-
nel_address) into internal storage and on to channel subscribers.

CLOSE_CHANNEL channel_address num_users
gws closes a connection to the given channel (specified by channel_address). num_users were subscribed to
the channel at the point of closure.

Version 0.3 January 12, 2016 2

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

OPEN_CLIENT client_address channel_address
A client at client_address successfully subscribes to channel at channel_address. This is prior to the
moment when the first chunk of data gets sent to the client (by designated gng).

CLOSE_CLIENT client_address channel_address num_users uptime nbytes npkts
Client session ends; summary statistics showing: number of subscribers num_users left for the given chan-
nel; session uptime shown as seconds.nanoseconds; total bytes (nbytes) transferred; total packets/chunks
(npkts) transferred.

NG_ATTACH/DETACH/QUIT pid index fd
New gng(1) attached/detached/quit to/from gws(1). Shown are: gng pid, internal index and connection fd.
NG_QUIT means that gng may have sent no CLOSE_xx messages prior to its exit.

AUTH_START/EXIT pid
Authorization helper started/exited. Shown is the helper’s pid.

ws.access_log.file = path
Full path to access log.

ws.channel_groups = path []
Full path to aliased channel-group configuration file (if any). If empty, no channel groups will be defined.
See details on aliased channel groups in channels.conf(5)

ws.channel_group_refresh = um [0]
Check every N seconds if channel-group config file changed, re-load and apply new channel-group settings
if it did.

ws.access_log.max_size_mb = num [16]
Maximum file size (in Mb, i.e. 1048576-byte chunks). Access log is rotated when this size is exceeded.

ws.access_log.max_files = num [16]
Maximum number of files to rotate to. The next rotation after this limit removes the oldest rotated access
log.

ws.access_log.time_format = local| gmt| raw| raw_mono| no_time| [local]
Sets format to display timestamps for log entries. See ws.log.time_format for details.

ws.access_log.show_pid = true|false [true]
Display PID as a log entry field.

ws.listener.*
The following are the settings equally applying to listeners of the two types of requests (admin and user)
handled by the application. You can define up to 32 user and 4 admin listeners. See gigapxy-com-
mented.conf for an example of multiple-listener config.

ws.listener.*.alias = unique-alias [{ifc}:{port}]
Unique human-readable identifier for the given listener. Populated by default by interface name and port
(see below) separated by colon. For ifc=eth0 and port=3030, the alias, unless specified otherwise, would be
set to eth0:3030.

Version 0.3 January 12, 2016 3

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

ws.listener.*.ifc = interface [any]
Name or the address of the network interface for the listener of requests. any, all signifies the ’anonymous’
interface with the address of 0, which means that the first eligible network interface will be picked by your
OS.

ws.listener.*.port = number
Port number for the listener.

ws.listener.*.default_af = inet | inet6 [inet]
is the address family to be used when an interface cannot be uniquely linked to a family. For instance, an
interface could have both IPv4 and IPv6 addresses associated with it.

ws.listener.*.is_safe = true|false [false]
Perform no authorization checks on user requests from this listener (allow all).

ws.pidfile.directory = dirname [/var/run/gigapxy]
Directory for the pidfile (must be writable by ws.run_as_user).

ws.pidfile.name = filename [gws-{user_port}.pid]
Name (w/o directory part of the path) of the pidfile, the default value uses the user-request listener port
number.

ws.idle_clk_ms = milliseconds [-1]
Time (ms) to wait before doing any idle-time tasks, -1 = no limit. This sets the resolution (or granularity)
for the timeouts or any other tasks done in idle time. The default value will have it perform idle tasks only
when an actual event (connection, signal, etc.) interrupts the wait loop.

ws.max_sockets_to_accept = num [127]
Max number of sockets to accept in one event. When an incoming connection breaks the event loop, the
module will try to accept(2) up to this limit of new sockets.

ws.multicast_ifc = name [any]
Default interface to use for sourcing multicast data.

ws.rcv_low_watermark = num [16]
Do not trigger a socket READ event unless at least num bytes have been received.

ws.run_as_user = username []
Run as this user when running as a daemon (if empty, do not switch).

ws.run_as_uid = uid [-1]
Run as the given user (uid) when running as a daemon (if -1, do not switch). If gid is not specified, then
gid = uid. uid > 0 will override run_as_user.

ws.run_as_gid = gid [-1]
Run in the given group (gid) when running as a daemon (if -1, gid = uid).

Version 0.3 January 12, 2016 4

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

ws.tcp_no_delay = true | false [true]
Set TCP_NODELAY option for each accepted socket.

ws.use_http10_get = true | false [false]
Use HTTP/1.0 in channel (GET) requests for data. This is to prohibit the server to use chunked transfer
encoding in response. nginx, often used as a proxy layer, has chunked encoding enabled by default and
may send video stream wrapped as HTTP chunks. For now, gigapxy does NOT support parsing HTTP
chunks in video streams.

ws.user_ping = true | false [false]
Allow ’ping’ or ’status’ requests on user-request listeners. NB: this feature is provided solely to maintain
compatibility with udpxy which has no dedicated admin listeners. User-side pings are disabled by default,
DO NOT ENABLE unless absolutely necessary, it is considered a safer practice to use admin listeners for
all admin requests.

ws.legacy_multicast_api = true | false [false]
Use older (family-specific) API to manage multicast subscriptions.

ws.non_daemon = true | false [false]
If started as root, become a daemon if true.

ws.enforce_core_dumps = true | false [false]
When set to true, the process invokes the necessary syscalls to make itself core-dumpable and set core limit
to unlimited. The default value of false leaves it to the shell defaults. NB: Under certain Linux versions,
UID-changing daemons become non-core-dumpable (see /proc/sys/fs/suid_dumpable and prctl(2) for
details).

ws.quiet = true | false [false]
No output to stdout/stderr if true.

ws.process_limits.*
This section allows to impose limits on the running process via setrlimit(2) syscall. Memory limits are
specified as strings containing numerals and an optional denominator suffix, such as Kb, Mb or Gb. The
number can have a fraction, so "1.5Kb" evaluates to 1024 + 512 = 1536 - the value to be submitted as a
limit. "0" value or omission of a limit parameter leaves current (system-imposed) limit unchanged.

ws.process_limits.rss = {N}{suffix} ["0"]
Resident memory cap: a process cannot exceed this amount in resident memory, memory allocation call(s)
should fail. NB: This limit cannot be enforced under Linux, where it would be replaced by RLIMIT_AS
(virtual memory cap). If both RSS and VMEM are to be limited under Linux, the smaller value is used with
RLIMIT_AS. Under FreeBSD, RSS limit is fully supported.

ws.process_limits.vmem = {N}{suffix} ["0"]
Virtual memory cap = RLIMIT_AS. Used in place of RSS cap under Linux. Both Linux and FreeBSD fully
support it.

ws.http_read_timeout_ms = milliseconds [200]
Timeout (in milliseconds) to read an HTTP-message portion.

Version 0.3 January 12, 2016 5

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

ws.user_request_timeout_ms = milliseconds [500]
Timeout (in milliseconds) for a user request to be processed.

ws.admin_request_timeout_ms = milliseconds [300]
Timeout (in milliseconds) for an admin request to be processed.

ws.module_request_timeout_ms = milliseconds [100]
Timeout (in milliseconds) for a module request to be processed. Module requests are those that go between
gws and gng.

ws.http_data_content_type = type_specifier [application/octet-stream]
HTTP Content-Type for data payload.

ws.channel_sample_timeout_ms = milliseconds [-1]
Pre-sample each new channel trying to read from it with the given timeout; unless -1 == timeout, then do
NOT pre-sample channels. NB: channels will be pre-sampled by gws, which will therefore wait and suffer
the associated latency penalty.

USE WITH DISCRETION.

ws.tput_stats.*
The following section specifies the parameters needed for engines to report traffic throughput statistics,
queried using report admin request. See gigapxy(1) for details on reports and admin request particulars.

ws.tput_stats.enabled = true | false [true]
Do not provide channel/client statistics unless true. Please note that engines will use additional CPU cycles
to gather and calculate relevant statistics.

ws.tput_stats.channel_path = posix_shmem_path [/gxy-cha.shm]
POSIX shared memory path for channel statistics (<= 32 characters).

ws.tput_stats.client_path = posix_shmem_path [/gxy-cli.shm]
POSIX shared memory path for client statistics (<= 32 characters).

ws.tput_stats.max_channel_records = num [250]
Max number of records (across all engines) in channel statistics. This should be no less than the maximum
number of channels to be handled at once.

ws.tput_stats.max_client_records = num [1000]
Max number of records (across all engines) in client statistics storage. This should be no less than the maxi-
mum number of clients to be handled at once by all engines.

ws.tput_stats.max_speed_delta = num [8]
Max difference (in Kb) between channel and client speeds. Speed delta is visible in TPS reports and will be
highlighted if delta gets exceeded.

ws.report.*
The following section specifies the parameters needed to support generation of various reports.

Version 0.3 January 12, 2016 6

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

ws.report.default.type = name [traffic]
Default report type to use (with a URL not specifying one).

ws.report.default.format = name [html]
Default report format to use (with a URL not specifying one).

ws.report.memory.min = bytes [524288]
Initial memory for the spool buffer (to contain full report text prior to the output).

ws.report.memory.max = bytes [16777216]
Maximum memory for the spool buffer (to contain full report text prior to the output).

ws.report.max_send_attempts = num [16]
Max number of transfer/send/output attempts to take if cannot output all at once.

ws.report.cache_timeout_ms = num [500]
Reports will be cached and served to subsequent requests within this timespan (ms), or NOT cached at all if
the value <= 0 (a fresh report will be generated for each request).

ws.report.backup_file = filepath []
File to save each report into (overwriting the previous one). If empty, do NOT save.

ws.sync.regular_timeout_ms = ms [500]
After a GNG attaches, synchronize (retrieve) channel/client stats from TPS cache in N ms after the attach.
Enabled only if TPS (ws.tput_stats.enabled is true).

ws.sync.forced_timeout_ms = ms [10000]
If at least one GNG is attached, synchronize (retrieve) channel/client stats from TPS cache every N ms.
Enabled only if TPS (ws.tput_stats.enabled is true).

ws.redirect.err_channel = channel_URL []
Redirect client (via HTTP 302) to channel_address if requested channel is unavailable (for any reason
other than an error in an internal component of gigapxy). Channel URL must be a full HTTP URL that will
be returned to client via HTTP 302 response.

ws.redirect.no_access = channel_URL []
Redirect client (via HTTP 302) to channel_address if access to the requested channel has been denied (by
an authorization helper). Channel URL must be a full HTTP URL that will be returned to client via HTTP
302 response.

ws.psensors.*
Performance sensors allow to measure resource utilization between two specific points within the applica-
tion, using the metrics provided by utime(2) utime(2) call at each end of the sensor. All sensor data will be
printed out at the application exit in the format similar to the output of time(1) utility.

Performance sensors are a debugging/profiling facility and incur additional load on the system.

USE WITH DISCRETION.

Version 0.3 January 12, 2016 7

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

Defined sensors:
app = application runtime; ev_loop = event processing (all events); ev_read = reading/processing inbound
data; ev_write = writing/processing outbound data; ev_err = processing error events; ev_pp = post-pro-
cessing events; ws_userq = processing user requests; ws_admrq = processing administrative requests
(reports, etc.).

ws.psensors.enable_all = true|false [false]
Enables all sensors if true, disables all otherwise. This is to initialize the set of enabled-sensor flags to
either all ones (if enabled) or all zeros. This setting is to be used in combination with ws.psensors.except.

ws.psensors.except = sensor_list []
Enables sensors in the list if ws.psensors.enable_all is true, or disables those sensors if false. This way
enable_all is used to initialize the set of sensors while except narrows it down by enabling/disabling its spe-
cific elements.

EXAMPLE A:

ws.psensors.enable_all = true; # Enable all sensors.

ws.psensors.except = ["ev_read", "ev_write"]; # Disable those listed herein.

Enables all sensors except ev_read and ev_write.

EXAMPLE B:

ws.psensors.enable_all = false; # Disable all sensors.

ws.psensors.except = ["ev_read", "ev_write"]; # Enable those listed herein.

Enables ev_read and ev_write sensors, all others are disabled.

ws.auth.*
Authorization helpers are user-defined applications (plug-ins) used by gws to screen user requests, based
on request-specific data, such as user address, request URI, etc. gws starts one or several helpers and com-
municates with them via pipes connected to helpers’ STDIN and STDOUT streams. Example helper scripts
(a1p-auth.sh, b2p-auth.sh) for two supported protocols are provided in /usr/share/gigapxy/scrpts under
Linux (/usr/local/share/.. under FreeBSD).

ws.auth.enabled = true|false [false]
Enable helpers unless false.

ws.auth.helper_protocol = "A1P"|"B2P" ["A1P"]
Defines the communication protocol between gws and auth helpers. A1P is the older/simpler protocol,
please see details in gigapxy.auth(5)

ws.auth.b_fields = fields ["USDP"]
This B2P-specific setting defines the fields (and their order) to be sent to auth helpers for evaluation.
"USDP" stands for URL, Source, Destination and Peer - they will be sent to helpers in that order. Full list of
protocol-supported fields can be found in gigapxy.auth(5)

Version 0.3 January 12, 2016 8

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

ws.auth.exec = exec_path_with_params []
Specify full path to the helper executable with all command-line parameters. This constitutes a complete
absolute-path to the helper binary with all required command-line options and parameters. NB: all helpers
will be launched under user/group specified in ws.run_as* settings.

ws.auth.min_helpers = count [1]
Number of helpers to start with and always keep running.

ws.auth.max_helpers = count [1]
Maximum number of helpers to run.

ws.auth.deny_no_auth = true|false [false]
Deny access to URI/resource if authorization cannot be performed (due to an internal error). Allow by
default so that authorization framework failure would not result in denial of service.

ws.auth.no_spawn_tmout = ms [5000]
Maximum time (ms) to disallow launching helpers after suspected cascading crashes. When a helper
crashes shortly after being launched, gws disables further helper launches for the configured time period.

ws.auth.aux_params = list_of_params []
Additional A1P-specific parameters passed to auth helpers. The available parameters are:

listener-alias = alias for the originating listener

ws.auth.can_rewrite_endpoints = true|false [false]
Instructs gws using B2P protocol to be ready to re-write Source or Destination endpoints if specified in
auth helper response message.

ws.auth.allow_custom_urls = true|false [false]
Instructs gws using B2P protocol to allow URLs that do not follow the two gigapxy-oriented patterns
(udp/address:port or src/s_url/dst/d_url). This setting should be true if auth helpers were to match custom
URLs to custom Source/Destination.

ws.auth.cache.*
Negative authentication responses can be cached by gws. This allows for much faster response when
helpers’ time is at the premium and may better chances in case of a DOS attack. The cache’s eviction
method is LRU (least recently used) and each entry (source URL) has a time-out.

ws.auth.cache.enabled = true|false [false]
Enable response cache if set to true.

ws.auth.cache.max_records = num [5000]
Set the maximum number of items in cache. If the number goes higher, extra items will be LRU-evicted.

ws.auth.cache.expiry_sec = num [300]
Set the lifespan of a cache item, in seconds.

AUTHORS
Pavel V. Cherenkov

Version 0.3 January 12, 2016 9

gws.conf(5) gws.conf (gws configuration file) manual page gws.conf(5)

SEE ALSO
gigapxy(1),gws(1),gng(1),gng.conf(5),channels.conf(5),gigapxy.auth(5)

Version 0.3 January 12, 2016 10

channels.conf(5) gigapxy channel-group config manual page channels.conf(5)

NAME
channels.conf - Gigapxy channel-group configuration file.

DESCRIPTION
gws(1) uses channel-group configuration to define channel sources that could be referenced not by absolute
address but via an alias. An alias is a name prepended by a dollar-sign character. gws, as it processes a
URL, recognizes an alias and translates it to an absolute-address URL to be used as a source.

An alias creates a name-to-URL mapping for user requests.

An example channel-group configuration is provided with the installation at /usr/share/doc/gigapxy under
Linux or /usr/local/share/doc/gigapxy under BSD. channels is the top-level section, under which channel
groups are listed/defined. The parameters used in configuring a single channel group are as below:

alias
This is the name to be used in URLs with the dollar-sign prefix. The name/alias will be translated into one
of the URLs from the set defined for the given group.

urls
The URL to resolve the alias to. A URL may contain an alias but only to be resolved remotely (by the
gigapxy daisy-chained to the current one). In the future, more than one URL (with a load-balancing
option) may be supported for this setting.

EXAMPLE
This is what contents of a channels.conf file may look like:

channels = (
{ alias = "TV5"; urls = ["file:///opt/prog/tv5/channel-down.ts"]; },
{ alias = "NightLife"; urls = ["udp://10.0.24.16:5054"]; });

Aliases are used with a dollar-sign prefix. A request to TV5 channel thus may look as:

a) http://acme.com:8080/$TV9

Or, in src/dst format, with a custom key parameter:

b) http://acme.com:8080/src/$TV9?key=BF094744c5/dst

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigapxy(1),gws(1),gws.conf(5)

Version 0.2 June 23, 2014 1

gigapxy.auth(5) gigapxy.auth (gigapxy authentication) manual page gigapxy.auth(5)

NAME
gigapxy.auth - Gigapxy authentication manual.

DESCRIPTION
gws employs helpers - custom scripts - to authenticate and authorize incoming user requests. Any appli-
cation reading from STDIN and responding via STDOUT could serve as a helper as long as it ’speaks’ one
of the two communication protocols: A1P or B2P. This page is dedicated to giving the insight into auth
helpers, employed protocols and associated capabilities.

Common features:
Both protocols have things in common. Firstly, they are textual and line-oriented: a message is a text string
ending with CRLF ASCII sequence (single LF symbol under Linux and FreeBSD). gws writes mes-
sages/lines to helpers via unnamed pipes connecting to the helpers’ STDIN.

Message example: B10 P 134.12.12.50:5050

Messages contain fields separated by whitespace. An empty (blank) value is always specified as - (dash).
Some fields are common for both protocols, the first field is always the same: Session ID.

Session-ID = A|B{1 .. 2147483647} [examples: A100, A1, B150433]
Identifies the request. The first symbol is protocol_id: ’A’ for A1P and ’B’ for B2P. The rest of the field is
session_number - non-zero 32-bit unsigned decimal integer; session ID in the incoming message should
match the one in the response.

Result-Code = {0 .. 2147483647} [examples: 0, 1, 111]
32-bit unsigned decimal integer, specifies the result of the evaluation. Only 0 (zero) code is treated as
APPROVE response, all others currently signify authorization failure.

A1P request:
A1P uses pre-defined sequence of mandatory and optional fields in each request/response message.

The request fields are: Session-ID Peer Source Destination [Listener] (the last field is optional and is added
only if ws.auth.aux_params value contains listener-alias).

A1P request example: A102 10.0.1.15:30403 udp://224.0.2.25:3030 - bb1

Peer = address:port
Address/port of the client (that sent the original request to gws)

Source = channel URL
URL of the requested channel, as specified either in udp or src section of the request URL.

Destination = client URL
URL for the destination. For most requests, destination is the socket/connection that started the request (i.e.
peer), empty value (dash) is used to specify it.

Listener = alias
Alias of the listener that accepted the request. Do mind that when using this option, alias must be specified
for each listener in gws.conf.

Version 0.3 January 12, 2016 1

gigapxy.auth(5) gigapxy.auth (gigapxy authentication) manual page gigapxy.auth(5)

A1P response:
A1P response example: A102 0

B2P protocol
B2P is an extension of A1P protocol that mainly addresses the inflexibility of A1P (fixed number of fields
come in and come out). The core features that drove towards creating a new protocol were: a) custom URLs
and b) endpoint (source/destination) re-write capability. B2P accommodates both of these features and pro-
vides future expansion of functionality. B2P adds one mandatory field to Session-ID, the Field-Mask.

Field-Mask = [a-z][A-Z]{16} [example: USDP]
Specifies the fields (up to 16) that will follow (in the order they will appear). A single symbol is designated
to each of the recognized fields, the mask is, in effect, a sequence of field identifiers.

Field identifiers:
U = Request-URL - the B2P field that holds URL for the HTTP request, the way it was in the header.
Example: /udp/224.0.4.56:4504

S = Source

D = Destination

P = Peer

A = User-Agent

L = Listener

r = Result-Code

Field-Mask ’USDP’ means that the message, besides the mandatory two fields, must have four fields of the
corresponding types. gws.conf provides ws.auth.b_fields setting to specify what information gws will send
to auth helpers with every B2P message.

B2P request:
Example B2P request: B102 UPL /udp/224.0.2.26:5034?auth=0x93fb0ad 10.0.3.14:40987 bb1

Some fields (r) don’t make much sense in the request and will be rejected by gws if specified.

B2P response:
It’s up to the helper implementation what set of fields would be returned, but at least one field should be.
Absense of Result-Code is assumed as APPROVE as long as other fields are present in the response. With
all the flexibility , only certain fields will be accepted in by gws in the response message.

Response-approved fields:
S = source will be re-written to the returned value

D = destination will be re-written to the returned value

r = APPROVE if 0, DENY otherwise.

A typical B2P denial response would be: B102 r 111 (Don’t you worry about 111, any non-zero number
would do).

Custom URLs and source re-write
B2P (and appropriate settings in ws.auth config section) allows completely opaque URLs to be converted
to gigapxy-compliant source/destination pairs. Request-URL field matched to helper-specific endpoints

Version 0.3 January 12, 2016 2

gigapxy.auth(5) gigapxy.auth (gigapxy authentication) manual page gigapxy.auth(5)

allows to reply with the appropriate Source (and Destination is needed) and let gws know what the end-
points are.

Here’s an example scenario:

GET /dc03d03332f09a is the original HTTP request as read by gws.

The auth config specifies:
auth: {

enabled = true;
helper_protocol = "B2P";
b_fields = "USP";
exec = "/usr/local/bin/b2p-auth.sh /var/log/gigapxy/auth.log";
deny_no_auth = true;
can_rewrite_endpoints = true;
allow_custom_urls = true;

};

allow_custom_urls lets gws ignore that the URL could not be parsed into gigapxy endpoints, so both
Source and Destination remain empty after request has been parsed.

gws sends a B2P request: B1 USP /dc03d03332f09a - 10.0.14.26:40987

Please note that Source is empty in the request and could be omitted if we know it’s never needed by the
helper. The helper translates the data (using its own logic) into the following response:

B1 S udp://226.0.3.14:6060

gws reads the response and assumes the request is APPROVED (no r field but another field present). It
then takes udp://226.0.3.14:6060 as the source endpoint, directing to read from the given multicast chan-
nel.

Where do I begin?
Having decided which features you’d need and thus which protocol to select, make a copy of the corre-
sponding example helper in /usr/share/gigapxy/scrpts under Linux (/usr/local/share/.. under FreeBSD).
If you understand the logic, but dislike /bin/sh, use any other language. Once your helper (kind of) works,
make a text file (requests.txt) with sample requests (the kind you’d be most likely processing) and run:

cat requests.txt | auth-helper /var/log/helper.log

The output will be the response messages. If somethig does not quite work, the log (where your script
writes) should help.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigapxy(1),gws(1),gng(1),gng.conf(5),gws.conf(5)

Version 0.3 January 12, 2016 3

gng(1) gng (Gigapxy engine) manual page gng(1)

NAME
gng - Gigapxy engine daemon.

SYNOPSIS
gng [-h?TvVq] [-C config_file] [-l logfile}] [-p pidfile] [-w path] [-P cpunum]

DESCRIPTION
gng is the Gigapxy engine module performing I/O on behalf of data requests submitted to gws. The format
of gws requests is described in the gigapxy(1) manpage.

gng attaches to the specified gws upon start-up; up to 64 engines may attach to a single gws. The control-
ling gws relays (pre-processed) data requests to the attached engines for execution.

gng takes its parameters from a configuration file, which is either gng.conf or gigapxy.conf by default and
can contain sections for any or all gigapxy modules. gng will look for the default configuration in a) current
directory; b) /etc; c) /usr/local/etc. Path to a specific configuration file could be given at command-line
(see OPTIONS). Configuration options for gws are described in detail in gng.conf(5) manpage.

gng re-reads its configuration in response to SIGHUP. gng will force-rotate its log in response to
SIGUSR1.

OPTIONS
gng accepts the following options:

-h, --help, -?, --options
output brief option guide. This is NOT the behavior when run without parameters.

-C, --config path
specify configuration file.

-l, --logfile path
specify log file.

-p, --pidfile path
specify pid file.

-w, --gws path
specify path to the controlling gws (domain socket).

-T, --term
run as a terminal (non-daemon) application. This is the default behavior when gws is run by a
non-privileged user. -T could be specified when run as root in order NOT to become a daemon,
for instance, for debugging purposes.

-v, --verbose
set the level of verbosity in the output. This option could be repeated to get to the desired level,
which is 0, unless the option is used at least once. Level 0 will reduce output to the very essential
log entries of NRM (normal) priority; level 1 will set verbosity to output to INF (info): suitable
for monitoring but not debugging; level 2 will enable DBG (debug) level for most (but not all)
application modules (please mind that bufd is NOT at debug at level 2); level 3 will set DBG
(debug) for additional modules, including bufd; level 4 will set all modules to debug. This switch
has a rather inflexible nature, for more precise setting of log levels please use config settings
alone.

Version 0.1 April 2, 2014 1

gng(1) gng (Gigapxy engine) manual page gng(1)

-V, --version
output application’s version and quit.

-q,--quiet
send no output to terminal. This is to supress any output normally sent to standard output or error
streams. Unless specified, when run from a non-privileged account, gws will mirror diagnostic
messages sent to the log (as specified with the -l option) to standard output.

-P,--cpu
Set CPU affinity for the main process. This option allows to restrict the main gng process to the
given CPU/core (numbered from 0 to N-1).

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigapxy(1),gws(1),gws.conf(5),gng.conf(5)

Version 0.1 April 2, 2014 2

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

NAME
gng.conf - Gigapxy engine configuration file.

gng(1) is the gigapxy(1) data processing daemon, responsible for the I/O on behalf of user requests relayed
to it by gws(1). The configuration file contains the parameters read by the daemon at the launch. The file is
in easy-to-read libconfig format. An example of a gng.conf is provided with the installation.

Once the parameters are read by gng, the daemon operates with those values util the configuration is
re-loaded in response to SIGHUP.

All gng(1) settings begin with the ng. prefix, as in ng.section.param. A configuration file may also contain
settings intended for other modules; gng would ignore all non-gng settings.

The configuration settings are listed below. The default value for a setting is given in square brackets as
[default]. Parameters without default values are mandatory.

ng.ng_socket_path = path [/var/run/gpx-ngcomm.socket]
is the domain socket path for communications between gws and the attached gng’s.

ng.log.level_default = err| crit| warn| norm| info| debug [info]
Defines the level of verbosity for the log.

ng.log.file = path
Full path to log.

ng.log.max_size_mb = num [16]
Maximum file size (in Mb, i.e. 1048576-byte chunks). Log is rotated when this size is exceeded. gng will
force-rotate its current log in response to SIGUSR1.

ng.log.max_files = num [16]
Maximum number of files to rotate to. The next rotation after this limit removes the oldest rotated log.

ng.log.time_format = local| gmt| raw| raw_mono| no_time| [local]
Sets format to display timestamps for log entries. local will loglocal-timezone specific time in YYYY-
MM-DD HH24:MI TZ format. gmt will log GMT time in the same human-readable format as local; raw
logs high-resolution time as the number of seconds.nanoseconds since the Epoch (1970-01-01 00:00:00
UTC); raw-mono logs system-specific monotonic time (used for timespan measurement, not correlated to
clock time). no_time logs no time at all.

ng.log.show_pid = true|false [true]
Display PID as a log entry field.

ng.log.enable_syslog = true|false [true]
Write errors, warnings and critical messages to syslog(2).

ng.pidfile.dir ectory = dirname [/var/run/gigapxy]
Directory for the pidfile (must be writable by ng.run_as_user).

Version 0.2 April 18, 2014 1

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

ng.pidfile.name = filename [gng-{user_port}.pid]
Name (w/o directory part of the path) of the pidfile, the default value uses the user-request listener port
number.

ng.idle_clk_ms = milliseconds [-1]
Time (ms) to wait before doing any idle-time tasks, -1 = no limit. This sets the resolution (or granularity)
for the timeouts or any other tasks done in idle time. The default value (-1) will have it perform idle tasks
only when an actual event (connection, signal, etc.) interrupts the wait loop. gng will set the idle clock to
the minimum value of a channel/client timeout.

ng.run_as_user = username []
Run as this user when running as a daemon (if empty, do not switch).

ng.run_as_uid = uid [-1]
Run as the given user (uid) when running as a daemon (if -1, do not switch). If gid is not specified, then
gid = uid. uid > 0 will override run_as_user.

ng.run_as_gid = gid [-1]
Run in the given group (gid) when running as a daemon (if -1, gid = uid).

ng.non_daemon = true | false [false]
If started as root, become a daemon if true.

ng.enforce_core_dumps = true | false [false]
When set to true, the process invokes the necessary syscalls to make itself core-dumpable and set core limit
to unlimited. The default value of false leaves it to the shell defaults. NB: Under certain Linux versions,
UID-changing daemons become non-core-dumpable (see /proc/sys/fs/suid_dumpable and prctl(2) for
details).

ng.no_rtp_strip = true | false [false]
When set to true, the engine does not attempt to convert RTP-over-TS into plain TS datagrams (enabled by
default). When ’stripping’ is disabled, gng would consider RTP packets as non-TS and relay them AS-IS.

IMPORTANT: data buffers MUST be memory-mapped (mmap_files or mmap_anon) for gng to
perform RTP stripping. Disable RTP stripping (ng.no_rtp_strip = true) if using non-memory buffers.

ng.use_sendfile = true | false [true on FreeBSD otherwise false]
Prefer to use sendfile(2) to send out data. This makes a big difference on FreeBSD, which implements zero-
copy through this syscall. Setting this to true on Linux may or may not improve performance (so it’s false
by defaylt under Linux).

ng.quiet = true | false [false]
No output to stdout/stderr if true.

ng.cpunum = -1 | 0 .. N [-1]
Set affinity to CPU #N (zero-based) for this process, unless -1 (or <0).

ng.process_limits.rss = {N}{suffix} ["0"]
Resident memory cap: a process cannot exceed this amount in resident memory, memory allocation call(s)
should fail. NB: This limit cannot be enforced under Linux, where it would be replaced by RLIMIT_AS

Version 0.2 April 18, 2014 2

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

(virtual memory cap). If both RSS and VMEM are to be limited under Linux, the smaller value is used with
RLIMIT_AS. Under FreeBSD, RSS limit is fully supported.

ng.process_limits.vmem = {N}{suffix} ["0"]
Virtual memory cap = RLIMIT_AS. Used in place of RSS cap under Linux. Both Linux and FreeBSD fully
support it.

ng.max_channels = num [200]
Maximum number of channels allowed (per engine).

ng.max_channel_clients = num [500]
Maximum number of clients per single channel.

ng.channel_io_timeout_sec = seconds [5]
Maximum time (in seconds) to wait on I/O for a channel.

ng.client_io_timeout_sec = seconds [5]
Maximum time to wait on I/O for a client.

ng.client_busy_timeout_sec = seconds [86400 = 24 hours]
Maximum time for a client session.

ng.can_extend_clients = true|false [false]
If a client times out, check if there’s pending (channel) data and the client is writable. If writable, extend its
wait period (just this one time) by client_io_timeout_sec.

ng.client_socket_sndbuf_size = bytes [system default]
Client (sending) socket send buffer size (bytes).

ng.channel_socket_rcvbuf_size = bytes [system default]
Channel (receiving) socket buffer size (bytes).

ng.channel_lo_wmark = bytes, 0 = none [0]
Low watermark for channel sockets.

ng.client_tcp_cork = true|false [false]
Use Linux TCP_CORK socket option to aggregate client packets. Linux only.

ng.client_tcp_nopush = true|false [false]
Use BSD TCP_NOPUSH socket option to aggregate client packets. BSD only.

ng.multicast_ttl = hops [2]
Multicast TTL value set for the outgoing mulitcast traffic.

ng.tput_stats.*
The following section specifies the parameters needed for engines to report traffic throughput statistics,
queried using report admin request. See gigapxy(1) for details on reports and admin request particulars.

Version 0.2 April 18, 2014 3

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

ng.tput_stats.enabled = true | false [true]
Do not provide channel/client storage unless true. Please note that engines will use additional CPU cycles
to gather and calculate relevant statistics.

ng.tput_stats.channel_path = posix_shmem_path [/gxy-cha.shm]
POSIX shared memory path for channel storage (<= 32 characters). Note: should match the corresponding
gws setting.

ng.tput_stats.client_path = posix_shmem_path [/gxy-cli.shm]
POSIX shared memory path for client storage (<= 32 characters). Note: should match the corresponding
gws setting.

ng.tput_stats.channel_report_ms = milliseconds [5000]
Report channel throughput every N milliseconds. (Will save the statistics in shared memory.)

ng.tput_stats.client_report_ms = milliseconds [5000]
Report channel throughput every N milliseconds. (Will save the statistics in shared memory.)

ng.tput_stats.max_packet_delta = bytes [-1]
Warn if two consecutive packets differ by more that N bytes, -1 = ignore. This setting allows to watch out
for inconsistencies in the UDP streams, where all messages are supposed to be of the same size.

USE WITH DISCRETION.

ng.ws.max_reconnects = num [10]
Attempt N reconnects with gws, unlimited if -1, none if 0. If the controlling gws crashes, gng makes a
number of attemtps, separated by pauses, to re-attach to it. Therefore, if a monitor on the crashed gws
restarts it successfully, the formerly-attached gng’s may re-attach.

ng.ws.reconnect_delay = milliseconds [500]
Delay (in milliseconds) between reconnect attempts.

ng.http_data_content_type = type_specifier [application/octet-stream]
HTTP Content-Type for data payload.

ng.bufd.*
The following section specifies the parameters for the internal cache used by gng to multiplex access to
channel data. For each channel (that needs to be cached) gng maintains a chain of buffers, representing con-
secutive segments for traffic data.

ng.bufd.keep_files = true | false [false]
Do not unlink(2) bufd files (make them visible). This is a debugging option.

USE WITH DISCRETION.

ng.bufd.mmap_files = true | false [true]
Map bufd files into memory. Results in faster access to cache but may exhaust host memory.

Version 0.2 April 18, 2014 4

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

ng.bufd.mmap_anon = true | false [false]
Allocate buffers in memory w/o using any filesystem space (i.e. buffers are not backed up by files). This
option provides the fastest access to cache but is limited by process’s memory constraints. It also overrides
mmap_files.

MUST USE mmap_anon OR mmap_files if you intend to strip RTP datagrams.
gng can only strip RTP datagrams in memory, so memory mapping is a MUST if you’re handling RTP traf-
fic. If you’re NOT handling RTP and economize on RAM using file-backed buffers, then please disable
RTP stripping by setting ng.no_rtp_strip = true

ng.bufd.mlock = true | false [false]
mlock(2) data buffers into physical memory. Make sure your system parameters allow this, for reference
see mlock(2) manpage.

ng.bufd.data_dir = pathname [/tmp]
Directory to place bufd files into.

The following three settings affect the way gng caches data. There is a certain amount that can be kept per
channel to ensure that new clients can start receiving data without delay. The settings below regulate that
amount and set the point (in the cache) from which data gets served to a new client.

ng.bufd.min_total_duration_sec = seconds [5]
Minimum of data cached for a channel, measured in time it took to receive it. No channel buffers get recy-
cled until this much data has been saved. The exact amount preserved in cache could be a above but never
below the imposed threshold; gng would recycle a buffer only if, after its removal, the cache would still
have >= seconds worth of data.

ng.bufd.min_total_size = bytes [1048576]
Minimum of data cached for a channel, in bytes. No channel buffers get recycled until this much data has
been saved.

The two settings above work in tandem, each of them setting a threshold. gng will consider that enough
data has been cached as soon as either or both of those thresholds have been reached: if, for instance, the
first setting is 5 seconds and the second one is 10485760 bytes (10 Mb), then enough is as soon as we’ve
cached 10Mb or accumulated more than 5 seconds worth of data (if the channel is slow, it may be less than
10Mb).

Channel data is stored as a sequence of buffers, from the most-recently-received one - the HEAD, to the
oldest one - the TAIL.

A newly-joined client/subscriber needs the first data buffer to start with. The setting below defines the
algorithm gng would use to pick one.

ng.bufd.start_mode = 0 | 1 | -1 | 2 [1]
Defines the method to pick the initial buffer for a client:

0 (HEAD) picks the most-recently-received buffer, offset: 0 (cached: all of the most recent buf-
fer).

2 (EDGE) picks the most-recently-received buffer, offset: END-OF-DATA (no data cached).

Version 0.2 April 18, 2014 5

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

1 (MIN_CACHED) picks the buffer that allows to transfer N seconds or M bytes of data, offset: 0
(cached: N seconds/M bytes).

-1 (TAIL) picks the oldest buffer in cache, offset: 0 (cached: all current data for the channel).

All the above methods, except EDGE (2) position a new client at zero offset in the selected buffer. This
way there is always some data to send to the client right away, without I/O wait. EDGE ensures a no-cache
policy: only the data received during the client’s lifespan gets relayed to the destination.

MIN_CACHED (1) uses ng.bufd.min_total_duration_sec and ng.bufd.min_total_size to determine which
buffer to pick. The algorithm starts at the HEAD and moves towards the tail accumulating the volume and
time for each buffer it lands on; as soon as either of the thresholds is reached, the buffer is selected as the
one to start at.

ng.bufd.burst_mode = 0 (none) | 1 (scan) | 2 (burst) [1]
Defines the method used to prevent excessive growth of buffer chains using a ’bubble-burst’ technique. A
’bubble’ is a (long) sequence of unused buffers (U) squeezed in between a small number of active buffers
(A). A slow client may claim (lock on) a buffer and then slow down, while other clients go ahead. The tail-
side buffer would be still locked while the buffers towards the head get used and un-locked: AAUUUUUU-
UUUUUA. The U-sequence is the ’bubble’. In mode 1 (scan) gng scans a channel looking for a bubble
(and warns if it finds one), in mode 2 2 (burst) it also tries to invalidate the rightmost A-buffer and release
the underlying U-sequence (the bubble).

ng.bufd.max_unit_count = num [128]
Maximum number of buffers for all channels within the given gng instance. Not all buffers, as a rule, get
allocated at once. This sets the limit to the number of buffers across all channels.

ng.bufd.prealloc_count = buffers [max_unit_count / 4]
Number of shared buffers to pre-allocate at the engine’s start.

ng.bufd.max_units_per_channel = num [1/3 of max_unit_count, yet within 4..12 range]
Maximum numbers of buffers per channel. Setting this to a well-balanced value will provide for fair distru-
bution of buffers across channels and will prevent hogging buffer space by channels with slow clients.

ng.bufd.max_unit_size = bytes [16777216]
Maximum number of bytes in a single buffer. When this threshold is hit, another buffer is added to cache.

ng.bufd.max_dgram_size = bytes [1500]
Maximum size of a (UDP) datagram expected (should not exceed MTU). NB: must be adjusted if using
jumbo frames.

ng.bufd.max_unit_duration_sec = seconds [30]
Maximum duration (seconds) of a single buffer. When this threshold is hit, another buffer is added to cache.

ng.bufd.allow_emergency_recycle = true | false [false]
Allow to force-recycle the oldest buffer when cannot allocate a new one.

ng.bufd.client_catch_up_ms = ms [0]
Advance to the most recent buffer if no data gets sent out within the given time period. Once a client times
out, its output marker is shifted to ’catch up’ with the source data flow. For start_mode = EDGE (2), the

Version 0.2 April 18, 2014 6

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

offset would be at the end of the head buffer (edge), for other modes - byte 0 of the head buffer.

associated with a channel to track incoming datagrams. Certain features rely heavily on such tracking. A
datagram index holds a number of datagram sequences. Each sequence accounts for a number of consecu-
tive datagrams of the same size.

ng.bufd.stale_dgram_ms = ms [0]
If non-zero, the value sets expiry period for inbound data in UDP channels. If a client finds itself at the
point of needing to transmit a stale datagram, its output offset gets shifted to byte 0 of the
most-recently-received datagram.

ng.bufd.max_dseq_ms = ms [8 * stale_dgram_ms]
Maximum time in milliseconds (worth of data) to aggregate in a single datagram sequence. This setting
could be made smaller to increase precision of time measurement for stale_dgram_ms or made larger to
aggregate more datagrams in a single sequence (in order to save space).

USE WITH DISCRETION.

ng.bufd.recycle_timeout_sec = seconds [30]
Time period to check for stale channel buffers that could be recycled (-1|0 = never).

ng.transfer_buffer_size = bytes [1048576]
Size of the intermediate buffer used to facilitate I/O. This setting is unused when cache buffers are mem-
ory-mapped.

ng.cli_write_delay.*
This section regulates delaying data output to reduce the number of write(2) syscalls. Data is accumulated
until the saved portion is large enough.

ng.cli_write_delay.enabled = true|false [true]
Write delays are enabled if set to true.

ng.cli_write_delay.timeout_ms = delay_ms [100]
Delay for no more than N milliseconds.

ng.cli_write_delay.max_buffered = max_bytes [1048576]
Delay up to max_bytes of data, disregard if 0.

ng.psensors.*
Performance sensors allow to measure resource utilization between two specific points within the applica-
tion, using the metrics provided by utime(2) utime(2) call at each end of the sensor. All sensor data will be
printed out at the application exit in the format similar to the output of time(1) utility.

Performance sensors are a debugging/profiling facility and incur additional load on the system.

USE WITH DISCRETION.

Defined sensors:
app = application runtime; ev_loop = event processing (all events); ev_read = reading/processing inbound
data; ev_write = writing/processing outbound data; ev_err = processing error events; ev_pp = post-pro-
cessing events; ng_chaio = channel data I/O; ng_clio = client data I/O.

Version 0.2 April 18, 2014 7

gng.conf(5) gng.conf (gng configuration file) manual page gng.conf(5)

ng.psensors.enable_all = true|false [false]
Enables all sensors if true, disables all otherwise. This is to initialize the set of enabled-sensor flags to
either all ones (if enabled) or all zeros. This setting is to be used in combination with ng.psensors.except.

ng.psensors.except = sensor_list []
Enables sensors in the list if ng.psensors.enable_all is true, or disables those sensors if false. This way
enable_all is used to initialize the set of sensors while except narrows it down by enabling/disabling its spe-
cific elements.

EXAMPLE A:

ng.psensors.enable_all = true; # Enable all sensors.

ws.psensors.except = ["ev_read", "ev_write"]; # Disable those listed herein.

Enables all sensors except ev_read and ev_write.

EXAMPLE B:

ng.psensors.enable_all = false; # Disable all sensors.

ng.psensors.except = ["ev_read", "ev_write"]; # Enable those listed herein.

Enables ev_read and ev_write sensors, all others are disabled.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigapxy(1),gws(1),gng(1),gws.conf(5),channels.conf(5),gigapxy.auth(5),mlockall(2)

Version 0.2 April 18, 2014 8

