
gigaplus(1) gigaplus manual page gigaplus(1)

NAME
GigA+ - IPTV-stream delivery software.

DESCRIPTION
GigA+ (giga-plus) is a software to deliver video streams from content-providers to clients (STBs, smart
TVs, video players, etc.). GigA+ can deliver video as linear streams - via HTTP, or as segments - via HLS.
For HLS, a third-party HTTP server (such as NginX) may be used, otherwise it’s done by gxng(1) module.

GigA+ is a descendant of Gigapxy, which is centered on linear delivery and has two modules: gws and
gng. GigA+ includes similar modules, named gxws and gxng.

Basic terminology and use cases
GigA+ uses the term channel for a data source and client for a destination.

GigA+ feeds data from M multicast channels to N clients (where N >= M). A client is an application that
issued an appropriate HTTP request to a GigA+ module.

GigA+ is designed to serve as many clients, as possible, efficiently and economically. For linear delivery, a
built-in cache allows new clients to start reading cached (channel) data at once, minimizing the delay asso-
ciated with switching between IPTV programs. For the end user this means that changing IPTV channels is
very fast.

In case of HLS delivery, GigA+ allows to distribute the load to multiple servers using a load-balancing
module. DVR could be set up for any of HLS-enabled channels to allow delayed playback.

APPLICATION MODULES
GigA+ modules could be divided into three categories: preparation, delivery and load-balancing. For
linear streaming, all modules are about delivery. For HLS delivery, a linear source stream must be first pre-
pared: divided into segments and segments mapped to playlist items. Load-balancing modules ensure that
data segments are available on multiple hosts and that requests get distributed between those hosts.

gxws (Web service)
processes and validates a user request, sets up input and output ends of the associated data
streams, then dispatches the request to the appropriate engine: a gxng process. In case of HLS,
the request is either for a playlist or for a data segment. For a playlist, gxws reaches out to the
playlist manager module (gxpm) and passes the playlist to the client. For a data segment, gxws
passes the request to a gxng engine, to delver the content. gxws controls N gxng instances, where
N <= number of cores. This allows to distribute CPU load evenly.

gxng (Delivery engine)
processes requests from gxws and delivers data streams to clients. Each gxng has a controlling
gxws to which it attaches via a designated UNIX socket. Most of the CPU load falls on gxngs,
so there are usually multiple instances attached to the controlling gxws, pinned to different CPU
cores. gxng reports client-related events it is handling; the reports allow gxws to track data
streams and load-balance between multiple engines. gxng regularly updates traffic perfor-
mance statistics (TPS) for gxws traffic reports.

vsm (HLS Stream Manager)
is a stream-preparation module for HLS channels. It takes care of partitioning the input (linear)
stream into segments and notifying all other modules of its actions. Each vsm instance handles a

Version 0.1 September 14, 2017 1

gigaplus(1) gigaplus manual page gigaplus(1)

distinct channel, all required parameters vsm obtains from a channel spec - a human-readable
configuration file. vsm, however, is just a front: it invokes two other video-preparation modules
to perform its function. vsm also takes care of restarting relevant modules and ensuring that feed
interruptions and stream errors are handled correctly.

gxseg (HLS Stream Segmenter)
splits input stream into segments. It notifies the playlist manager on every split, to account for
every segment. This module is launched and run by vsm and is never called directly.

wux (Message proxy)
facilitates message passing from gxseg to the playlist manager. wux maintains a segment mani-
fest to prevent data loss in case of a crash. This module is launched and run by vsm and is never
called directly.

gxpm (HLS playlist manager)
is responsible for generation of playlists. vsm produces meta-data for gxpm: it supplies
playlist-item info as items get generated by gxseg. gxws relays playlists from gxpm to the
clients. For load-balancing, gxpm also sends notifications (one per item) to dwg(1) download
agents.

dwg (Download agent)
listens for segment-ready notifications from gxpm and fetches segments from remote severs.

flb (FastCGI load balancer)
is a web-server module to distribute segment requests across a set of hosts. It could use
round-robin or min/max criteria for distribution. flb redirects requests via HTTP 302 to the
servers picked by the distribution algorithm.

STREAMING MODES
GigA+ supports two streaming modes: linear (source stream is served is a continuous manner) and HLS
(stream is served as a sequence of data segments, compliant with Apple HLS protocol).

Linear streaming
gxws and gxng are the key modules when a request for linear streaming is made. A request is initially
received by gxws, which (after authentication) connects to the source stream and then delegates further I/O
to one of the attached gxng engines.

A request for linear streaming may look like the following:

http://acme.com:8080/src/udp://224.0.2.26:5959/dst/?key=493f064567

For a detailed look at request formats please refer to gxws(1) manpage.

In this case the gxws parses the above request and subscribes (unless already subscribed) to the requested
multicast channel 224.0.2.26:5959. Then it passes both connections (source A = 224.0.2.26:5959, destina-
tion B = request socket) to the selected gxng instance. gxng proceeds with relaying data from A to B until
either connection is shut down.

Version 0.1 September 14, 2017 2

gigaplus(1) gigaplus manual page gigaplus(1)

Single-server HLS streaming
is the mode when content is delivered via HLS, with all data segments on a single server. An HLS-playlist
request comes to gxws. Such a request may look like the following:

http://data-host1:4046/hls-m3u/showtime/playlist.m3u8

For a detailed look at request formats please refer to gxws(1) manpage.

In this case gxws identifies this as a request for a LIVE playlist. gxws requests the playlist from gxpm
using showtime as the channel identifier. For gxpm to be able to produce a LIVE playlist for showtime,
the channel’s vsm should be up and running, supplying gxpm with metadata on generated segments. gxpm
responds to the request with the HLS playlist containing links (URLs) to data segments (in the LIVE-feed
window). A data-segment URL looks like the following:

http://data-host1:4046/hls-fra/showtime/23192767.ts

This links back to the gxws (using the same port and hls-fra prefix), so the segment (23192767.ts) is to be
fetched via gxng. Once gxws recveives the request, it passes it on to a gxng engine to deliver the segment
to the client. In another scenario, there could be a different link for this segment:

http://data-host1:8086/gpx-seg/showtime/23192767.ts

In this case, a third-party web server has been set up to listen on port 8086 and serve files from /gpx-seg.
That web server is an independent component responsible for segment delivery. No gxng is needed and
gxws could operate without a single gxng attached (if only HLS requests were to be served).

Multi-ser ver HLS streaming
is the mode when data segments are replicated across N > 1 participating servers. In this scenario, gxpm
sends segment-ready notifications to a multicast channel and dwg(1) download agent reads the notifica-
tions and downloads the respective segments.

gxpm is set up to generate segment URLs suitable for load balancing. The balancing is done using flb(1)
module. flb, paired with a (third-party) web server, load-balances requests by picking servers from the
pool and re-directing inbound data-segment requests accordingly, via HTTP 302. A data-segment URL
may look like the following:

http://lb-host:5089/gpx-seg/showtime/23192767.ts

flb listens on lb-host:5089, with hosts in the pool ranging from data-host1 to data-host8. It picks data-
host4 for this particular request and re-direct to:

http://data-host4:8086/gpx-seg/showtime/23192767.ts

where a third-party webserver (or gxws) services it. flb is NOT a stand-alone server but a FastCGI mod-
ule. For now, flb has been tested and is guaranteed to function currectly with NginX 1.4+.

For advanced load balancing (beyond round-robin), Redis NoSQL database must run on one of the servers.
The database consolidates various metrics across the server pool, allowing flb to use mini-max algorithms
based on custom load sensors. For further details on setting up load balancing and configuring mini-max,

Version 0.1 September 14, 2017 3

gigaplus(1) gigaplus manual page gigaplus(1)

one should refer to gxa-lb-setup(5) manpage.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gxws(1),gxng(1),flb(1),dwg(1),gxpm(1),gxseg(1),wux(1),vsm(1),gxa-lb-setup(7)

Version 0.1 September 14, 2017 4

gxws(1) gxws manual page gxws(1)

NAME
gxws - GigA+ web service daemon.

SYNOPSIS
gxws [-h?TvVqkU] [-C config_file] [-l logfile}] [-p pidfile]

DESCRIPTION
gxws is the front-end module of GigA+. It handles user and administrative requests submitted via HTTP
protocol. The format of requests is described in the USER REQUESTS and ADMIN REQUESTS sec-
tions of this page.

gxws dispatches (certain) user requests to GigA+ engines, instances of the gxng(1) daemon. At least one
gxng instance should be running for GigA+ to accept requests for data (except for HLS-segment requests
when a third-party web server delivers the segments). A single gxws instance can control up to 64 engines.

gxws takes its parameters from a configuration file, which is either gxws.conf or gigaplus.conf by default,
and can contain sections for any or all GigA+ modules. gxws will look for the default configuration in a)
current directory; b) /etc; c) /usr/local/etc. Path to a specific configuration file could be given at com-
mand-line (see OPTIONS). Configuration options for gxws are described in detail in the CONFIGURA-
TION section of this page.

gxws re-reads its configuration in response to SIGHUP. gxws will force-rotate its log in response to
SIGUSR1.

OPTIONS
gxws accepts the following options:

-h, --help, -?, --options
output brief option guide. This is NOT the behavior when run without parameters.

-C, --config path
specify configuration file.

-l, --logfile path
specify log file.

-p, --pidfile path
specify pid file.

-T, --term
run as a terminal (non-daemon) application. This is the default behavior when gxws is run by a
non-privileged user. -T could be specified when run as root in order NOT to become a daemon,
for instance, for debugging purposes.

-v, --verbose
set the level of verbosity in the output. This option could be repeated to get to the desired level,
which is 0, unless the option is used at least once. Level 0 will reduce output to the very essential
log entries of NRM (normal) priority; level 1 will set verbosity to output to INF (info): suitable
for monitoring but not debugging; level 2 will enable DBG (debug) level for most (but not all)
application modules; level 3 will set DBG (debug) for all modules. This switch has a rather
inflexible nature, for more precise setting of log levels please use config settings alone.

-V, --version
output application’s version and quit.

Version 1.5 June 27, 2017 1

gxws(1) gxws manual page gxws(1)

-q,--quiet
send no output to terminal. This is to supress any output normally sent to standard output or error
streams. Unless specified, when run from a non-privileged account, gxws will mirror diagnostic
messages sent to the log (as specified with the -l option) to standard output.

-k,--oldmcast
use legacy multicast API. gxws uses newer protocol-agnostic API by default, some (older) sys-
tems may not fully support it or exhibit erroneous behavior when using it. Enabling this option
will have gxws use the older protocol-specific multicast API.

-U,--unauth
Disable authorization (if configured). This option allows a quick command-line override to dis-
able whatever authorization method has been configured.

-K, --syskey
generate system key (to use in licensing) and exit.

USER REQUESTS
gxws(1) supports two categories of streaming: linear and HLS, and has distinct formats for either category.

Linear-streaming requests
The formats for linear streaming are:

a) http://{addr}:{gxws_port}/{cmd}/{mcast-addr}:{mcast-port}

WHERE
{addr}:{gxws_port} ::= IPv4/6 address of the user-request listener;
{cmd} ::= udp;
{mcast-addr}:{mcast-port} ::= IPv4/6 address of the mulitcast group;

NB: IPv6 addresses are always specified as [{addr}]:port, as in [ff18::1]:5056.

This (udpxy-style) type of request specifies multicast group as the data source and the requesting HTTP
connection as the destination.

b) http://{addr}:{gxws_port}/src/{channel-uri}/dst/{client-uri}

WHERE
{addr}:{gxws_port} ::= IPv4/6 address of the user-request listener;
{channel-uri} ::= URI for the channel (see format below);
{client-uri} ::= URI for the client (see format below);

URI format: {protocol}://{path}?{query}

c) http://{addr}:{gxws_port}/${alias}

This type of request uses a channel alias: a dollar-sign prefixed name that resolves to a URL for a channel.
Refer to channels.conf(5) for details on configuring channels using aliased groups.

Supported protocols are: FILE, TCP, UDP, HTTP. Below are a few examples of requests using different
protocols and formats:

Version 1.5 June 27, 2017 2

gxws(1) gxws manual page gxws(1)

a) http://acme.com:8080/src/file:///opt/data/somefile.dat/dst/?a=bb&c=dd

gxws(1) is listening on port 8080 at acme.com

Channel is a file with the full path: /opt/data/somefile.dat

The request has an associated query ’a=bb&c=dd’ which could be used to specify additional
parameters for the session.

Client (dst) is not specified, which defaults to the connection of the HTTP request.

The contents of /opt/data/somefile.dat will be sent to the client; at EOF point the engine will wait
(in a non-blocking manner) for the file to expand (be appended with more data) and, if the file
gets expanded, will send the new data to the client. If the file does not expand within a certain
(configurable) time period, the channel will time out and the clients’ sessions will be terminated.

b) http://acme.com:8080/src/udp://[ff18::1]:5056/dst/file:///opt/data/somefile.dat

Channel is a multicast group with IPv6 address ff18::1, port 5056

Client is a file with the path: /opt/data/somefile.dat

The engine will write any data arriving for the channel (multicast group) into the named file. The
channel may time out if no data arrive within a certain time period, in which case the session will
be closed. If there’s an error writing to the destination file, the session will also end.

c) http://acme.com:8080/src/udp://[ff18::1]:5056/dst/

d) http://acme.com:8080/udp/[ff18:1]:5056

The two requests above are equivalent (just stated in two different formats).

Both specify channel as the multicast group [ff18:1]:5056 and the (requesting) HTTP connection
as the client. A timeout may occur on either of the network connections here, either of the two
connections could also be broken by the peer, thus terminating the session.

e)
http://acme.com:8080/src/http://10.0.1.12:4056/udp/224.0.2.26:4033?kk=yy/dst/tcp://192.168.12.10:5051?mm=ff

specifies that channel data comes as a response to the HTTP GET /udp/224.0.2.26:4033?kk=yy
request sent to http://10.0.1.12:4056. Whatever application handles HTTP requests at that
address is expected to reply with a data stream destined to a TCP socket connected to the address:
192.168.12.10:5051. This session also has an associated query: ´mm=ff´, which could have a
meaning in the context of the given session.

This request underlines GigA+’s capability to cascade or ’daisy-chain’ requests, and, therefore,
link its instances or itself up with other applications compliant with either of the two request for-
mats (’udp-channel’ and ’src-dst pair’). A chain, such as, for instance, udpxy -> GigA+ -> udpxy
-> media player, is made possible by this functionality.

f) http://acme.com:8080/$TV9

requests to use an aliased channel TV9 as the source, the destination defaulting to the requesting

Version 1.5 June 27, 2017 3

gxws(1) gxws manual page gxws(1)

connection.

g) http://acme.com:8080/src/$TV9?key=BF094744c5/dst

requests the same aliased channel in src-dst format and appends the key parameter to the URL
the alias resolves to.

For further details on aliased channels one should refer to channels.conf(5)

HLS-streaming requests
Subdivide into two types:

a) Playlist requests
provide clients with the meta-data on the data segments to play back. The format of a playlist
(M3U8) request is as below:

http://{addr}:{port}/hls-m3u/${channel-tag}/playlist.m3u8[?utime={unix-time}]

WHERE:
hls-m3u is the identifying tag/keyword for the request type;
channel-tag is a symbolic tag, identifying the channel (not an alias from channels.conf);
unix-time (optional) is a UNIX timestamp for the start of the transmission (DVR mode).

Example (LIVE): http://acme.tv:5046/hls-m3u/tv5monde/playlist.m3u8

Example (DVR): http://acme.tv:5046/hls-m3u/tv5monde/playlist.m3u8?utime=1499069128

For DVR user supplies UNIX time, if data goes back as far as specified, the transmission will begin from
that moment (approximately).

b) Segment requests
provide actual data segments to the clients. gxpm(1) must be configured to provide the URLs
referencing gxws. The format of the URLs is as below:

http://{addr}:{port}/hls-fra/${channel-path}/{anyname}.ts

WHERE:
hls-fra is the identifying tag/keyword for the request type;
channel-path is a directory path, relative to hls.data_root (see CONFIGURATION section);
anyname is the file name (w/o the .ts extension), which could be of any format compatible with
filename guidelines for the OS.

Example: http://acme.tv:5046/hls-fra/vol3/2017-07-03/60706956.ts

Please note that the particular structure of the channel-path is heavily dependent on the settings in the
channel specification for vsm(1) and the settings for the gxpm(1) module.

On receipt of a segment request, gxws parses, validates it (assuring, for instance, that the referenced file
exists) and relays the request to one of the attached gxng instances, using the same load-balancing method
it would use for any other type of requests. gxng transmits the contents of the file to the client using the
original connection (passed to it by gxws).

NOTE also that a channel could be set up to deliver segments via a third-party web server. In that case, no
requests for segments arrive at gxws on behalf of that channel.

HTTP URL r e-direction
A client could be re-directed to an alternate source if the requested channel happens to be unavailable at
the time. gxws would reply with HTTP 302 (Moved Temporarily) in the hope that the client software rec-
ognizes the code and would follow the re-direction link. gxws performs a basic comparison check to
ensure that there’s no re-direction loop, yet the responsibility (re-direction loop detection & prevention)

Version 1.5 June 27, 2017 4

gxws(1) gxws manual page gxws(1)

lies on the client side.

HTTP HEAD support
HTTP HEAD requests can be used to check for channel availability. gxws treats HTTP HEAD in the same
manner as it would treat a GET, with the exception that it would not send back any channel data; neither
would it forward any information to a gxng. Re-direction, however, is still performed as appropriate.

ADMIN REQ UESTS
gxws(1) listens on dedicated TCP ports for administrative requests. The request types are as below:

TPS reports
TPS (traffic, tps) - throughput statistics on active channels and clients. The request format is as below:

http://{addr}:{port}/report?type={type}&format={format}&cached={0|1}

WHERE:
{type} ::= traffic|tps
{format} ::= html|web|xml

The output formats are:
HTML (html, web) - output as an HTML/web page.
XML (xml) - output as an XML page.

The default format is html. Note: throughput statistics should be enabled in appropriate config settings.

Example: http://acme.tv:4047/report?type=tps

Report caching
gxws(1) may cache a report for a certain time period, defined as ws.report.cache_timeout_ms in the con-
figuration. The request may request invalidation of the cache by using cached=0 parameter in the URL.
NB: this is to be used when getting the most actual data is critical. In all other cases, using cached reports
would be a wiser choice, saving CPU resources when many report requests come in close proximity.

Example: http://acme.tv:4047/report?type=tps&format=xml&cached=1

Drop channel/client
is to drop/disconnect a channel or a client: http://{addr}:{port}/drop?channel={chan-
nel_tag}&client={client_tag}

WHERE:
{channel_tag} is the name tag for the channel;
{client_tag} is the name tag for the client (within the channel).

NB: if client parameter is missing, then channel={channel_tag} with all its clients will be disconnected.

Both channel and client must be specified exactly as TPS reports display them. For instance, for a multicast
channel tagged as UDP://224.0.12.15:7010 (please do mind that URI parameters, such as authorization cre-
dentials etc., are not included) and a client tagged as TCP://192.168.10.15:50905, with gxws listening for
admin requests on 127.0.0.1:4047, the request:

http://127.0.0.1:4047/drop?channel=UDP://224.0.2.15:7010&client=TCP://192.168.10.15:50905 will

Version 1.5 June 27, 2017 5

gxws(1) gxws manual page gxws(1)

drop (disconnect) only the client, leaving the channel up and running, whereas

http://127.0.0.1:4047/drop?channel=UDP://224.0.2.15:7010 would drop (disconnect) all clients within the
channel and cancel/disconnect the channel’s inbound data stream.

gxws, upon receiving a ’drop’ request, looks up the channel record (but not the client), locates the appropri-
ate gxng and relays the request to it. It is not the responsibility of gxws to fulfill the request (since gxng
handles it from there), so gxws would report success (HTTP 200 OK) as soon as the request is sent to gxng.
If the client in the request is invalid, the error will only be discovered by gxng which sends no feedback to
the request’s origin. Should the request be successfully fulfilled by gxng, it will report client/channel drops
to gxws, resulting in appropriate entries added to the access log (see CONFIGURATION for more info on
gxws logs).

Ping/status
is to ping or get status: http://{addr}:{port}/ping or http://{addr}:{port}/status; status keyword is supported
to comply with the udpxy status command, which is NOT equivalent to ping. Nevertheless, udpxy users
used to issue a status request to check if the service was up. For GigA+ one should use ping. gxws returns
HTTP 200 whenever it receives either of the two commands.

Disconnect all (reset)
disconnects all clients and channels: http://{addr}:{port}/reset - this will have gxws send SIGUSR2 to all
attached gxng instances. SIGUSR2 directs a gxng to drop all its channels and clients.

AUTHORIZA TION
GigA+ utilizes authorization helpers - user-supplied components - communicating with gxws(1) via
STDIN and STDOUT. With authorization enabled (via config), each user request results in an authoriza-
tion request sent to a vacant auth helper. An illustrative example of a helper is prodvided at (for FreeBSD
use /usr/local prefix):

/usr/share/gigaplus/scripts/gauth.sh

An authorization request is a text string terminated by CR/LF.

Example:

A3404 104.12.33.67:12301 udp://224.0.2.12:5011?auth=ef031204ba0c -

Since gxws does not have any guarantee that a helper would not block on a request, it times out auth
requests (please see CONFIGURATION section for particular settings). If a request times out on an autho-
rization task, the respective auth helper gets kill(2) -ed.

Do make sure your time-out settings for user requests are well-balanced to allow ample time for auth
requests to complete gracefully. Also, ensure that enough auth helpers are running to distribute requests to.
gxws(1) issues warnings about a slow auth helper when it detects one (at a time-out), a sequence of such
warnings would indicate a mis-comfiguration issue.

For further details on authorization protocols and other relevant information, please refer to gxws.auth(5)
page.

CONFIGURATION
gxws(1) reads configuration from a file, either gxws.conf or gigaplus.conf, by default. After reading and
validating the config it applies whatever changes come from the command-line.

Version 1.5 June 27, 2017 6

gxws(1) gxws manual page gxws(1)

Once all the parameters are read by gxws, the module operates with those values util the configuration is
re-loaded in response to SIGHUP.

All gxws(1) settings begin with the ws. prefix, as in ws.section.param. Therefore, what’s referenced below
as, for instance aa.bb, should be ws.aa.bb in the config file. A configuration file could contain non-ws set-
tings too; gxws will ignore those.

The configuration settings are given below. The default value for a setting is given in square brackets as
[default]. Parameters without default values are mandatory.

ng.*
is the section defining communications between gxws(1) and gxng(1)

ng.socket_path = path [/var/run/gpx-ngcomm.socket]
is the domain socket path for communications between gxws and the attached gxng’s.

ng.force_shutdown = true | false [true]
If true, gxws will attempt to shut down (kill -SIGTERM) all attached ng’s on shutdown.

ng.pick_method = method [round-robin]
gxng selection method, using one of the following criteria: round-robin - next engine from the (circular)
list; min-channels - engine with the minimum channels; min-clients - engine with the minimum clients.

ng.accept_min_attached = num [1]
The number of NGs that should be attached to this gxws before it can accept user requests.

split_channels = true | false [false]
When set to true, gxws chooses a gxng for every new client before anything else, using ng.pick_method.
This allows to load-balance a single channel to multiple gxng-s/cores. The default method (with this setting
off) matches one channel to a particular gxng: all clients for that channel get handled by the initially-
assigned gxng.

log.*
Below are the settings pertaining to different modules within gxws(1). Setting verbosity for one of those
allows to variate debug log detailization for specific modules within the program. Not every module though
has a specific level attributed to it; most default to the non-specific common level.

The follow settings are for the application (debug) log. Application log captures various actions as they
happen without any specific focus.

log.level_default = err| crit| warn| norm| info| debug [info]
Defines the level of verbosity for the log across all modules.

log.file = path
Full path to debug log.

log.max_size_mb = num [16]
Maximum file size (in Mb, i.e. 1048576-byte chunks). Log is rotated when this size is exceeded. gxws will
force-rotate its current log in response to SIGUSR1.

Version 1.5 June 27, 2017 7

gxws(1) gxws manual page gxws(1)

log.max_files = num [16]
Maximum number of files to rotate to. The next rotation after this limit removes the oldest rotated log.

log.time_format = local| gmt| raw| raw_mono| no_time| [local]
Sets format to display timestamps for log entries. local will log local-timezone specific time in YYYY-
MM-DD HH24:MI TZ format. gmt will log GMT time in the same human-readable format as local; raw
logs high-resolution time as the number of seconds.nanoseconds since the Epoch (1970-01-01 00:00:00
UTC); raw-mono logs system-specific monotonic time (used for timespan measurement, not correlated to
clock time). no_time logs no time at all.

log.show_pid = true|false [true]
Display PID as a log entry field.

log.enable_syslog = true|false [true]
Write errors, warnings and critical messages to syslog(2).

access_log.*
The following settings are for gxws access log, serving a specific purpose of capturing channel and client
session statistics. Access log is updated every time a new data stream is opened or closed. The entry types
are:

OPEN_CHANNEL channel_address
gxws opens a connection to the given channel. Data starts flowing from the channel (specified by chan-
nel_address) into internal storage and on to channel subscribers.

CLOSE_CHANNEL channel_address num_users
gxws closes a connection to the given channel (specified by channel_address). num_users were subscribed
to the channel at the point of closure.

OPEN_CLIENT client_address channel_address
A client at client_address successfully subscribes to channel at channel_address. This is prior to the
moment when the first chunk of data gets sent to the client (by designated gxng).

CLOSE_CLIENT client_address channel_address num_users uptime nbytes npkts
Client session ends; summary statistics showing: number of subscribers num_users left for the given chan-
nel; session uptime shown as seconds.nanoseconds; total bytes (nbytes) transferred; total packets/chunks
(npkts) transferred.

NG_ATTACH/DETACH/QUIT pid index fd
New gxng(1) attached/detached/quit to/from gxws(1). Shown are: gxng pid, internal index and connection
fd. NG_QUIT means that gxng may have sent no CLOSE_xx messages prior to its exit.

AUTH_START/EXIT pid
Authorization helper started/exited. Shown is the helper’s pid.

access_log.file = path
Full path to access log.

Version 1.5 June 27, 2017 8

gxws(1) gxws manual page gxws(1)

access_log.max_size_mb = num [16]
Maximum file size (in Mb, i.e. 1048576-byte chunks). Access log is rotated when this size is exceeded.

access_log.max_files = num [16]
Maximum number of files to rotate to. The next rotation after this limit removes the oldest rotated access
log.

access_log.time_format = local| gmt| raw| raw_mono| no_time| [local]
Sets format to display timestamps for log entries. See log.time_format for details.

access_log.show_pid = true|false [true]
Display PID as a log entry field.

channel_groups = path []
Full path to aliased channel-group configuration file (if any). If empty, no channel groups will be defined.
See details on aliased channel groups in channels.conf(5)

channel_group_refresh = um [0]
Check every N seconds if channel-group config file changed, re-load and apply new channel-group settings
if it did.

listener.*
The following are the settings equally applying to [up to 16] listeners of the two types of requests (admin
and user) handled by the application. See gigaplus-commented.conf for an example of multiple-listener
config.

listener.*.alias = unique-alias [{ifc}:{port}]
Unique human-readable identifier for the given listener. Populated by default by interface name and port
(see below) separated by colon. For ifc=eth0 and port=3030, the alias, unless specified otherwise, would be
set to eth0:3030.

listener.*.ifc = interface [any]
Name or the address of the network interface for the listener of requests. any, all signifies the ’anonymous’
interface with the address of 0, which means that the first eligible network interface will be picked by your
OS.

listener.*.port = number
Port number for the listener.

listener.*.default_af = inet | inet6 [inet]
is the address family to be used when an interface cannot be uniquely linked to a family. For instance, an
interface could have both IPv4 and IPv6 addresses associated with it.

listener.*.is_safe = true|false [false]
Perform no authorization checks on user requests from this listener (allow all).

pidfile.dir ectory = dirname [/var/run/gigaplus]
Directory for the pidfile (must be writable by run_as_user).

Version 1.5 June 27, 2017 9

gxws(1) gxws manual page gxws(1)

pidfile.name = filename [gxws-{user_port}.pid]
Name (w/o directory part of the path) of the pidfile, the default value uses the user-request listener port
number.

idle_clk_ms = milliseconds [-1]
Time (ms) to wait before doing any idle-time tasks, -1 = no limit. This sets the resolution (or granularity)
for the timeouts or any other tasks done in idle time. The default value will have it perform idle tasks only
when an actual event (connection, signal, etc.) interrupts the wait loop.

max_sockets_to_accept = num [127]
Max number of sockets to accept in one event. When an incoming connection breaks the event loop, the
module will try to accept(2) up to this limit of new sockets.

multicast_ifc = name [any]
Default interface to use for sourcing multicast data.

rcv_low_watermark = num [16]
Do not trigger a socket READ event unless at least num bytes have been received.

run_as_user = username []
Run as this user when running as a daemon (if empty, do not switch).

run_as_uid = uid [-1]
Run as the given user (uid) when running as a daemon (if -1, do not switch). If gid is not specified, then
gid = uid. uid > 0 will override run_as_user.

run_as_gid = gid [-1]
Run in the given group (gid) when running as a daemon (if -1, gid = uid).

tcp_no_delay = true | false [true]
Set TCP_NODELAY option for each accepted socket.

use_http10_get = true | false [false]
Use HTTP/1.0 in channel (GET) requests for data. This is to prohibit the server to use chunked transfer
encoding in response. nginx, often used as a proxy layer, has chunked encoding enabled by default and
may send video stream wrapped as HTTP chunks. For now, gigaplus does NOT support parsing HTTP
chunks in video streams.

user_ping = true | false [false]
Allow ’ping’ or ’status’ requests on user-request listeners. NB: this feature is provided solely to maintain
compatibility with udpxy which has no dedicated admin listeners. User-side pings are disabled by default,
DO NOT ENABLE unless absolutely necessary, it is considered a safer practice to use admin listeners for
all admin requests.

legacy_multicast_api = true | false [false]
Use older (family-specific) API to manage multicast subscriptions.

non_daemon = true | false [false]
If started as root, become a daemon if true.

Version 1.5 June 27, 2017 10

gxws(1) gxws manual page gxws(1)

enforce_core_dumps = true | false [false]
When set to true, the process invokes the necessary syscalls to make itself core-dumpable and set core limit
to unlimited. The default value of false leaves it to the shell defaults. NB: Under certain Linux versions,
UID-changing daemons become non-core-dumpable (see /proc/sys/fs/suid_dumpable and prctl(2) for
details).

quiet = true | false [false]
No output to stdout/stderr if true.

process_limits.*
This section allows to impose limits on the running process via setrlimit(2) syscall. Memory limits are
specified as strings containing numerals and an optional denominator suffix, such as Kb, Mb or Gb. The
number can have a fraction, so "1.5Kb" evaluates to 1024 + 512 = 1536 - the value to be submitted as a
limit. "0" value or omission of a limit parameter leaves current (system-imposed) limit unchanged.

process_limits.rss = {N}{suffix} ["0"]
Resident memory cap: a process cannot exceed this amount in resident memory, memory allocation call(s)
should fail. NB: This limit cannot be enforced under Linux, where it would be replaced by RLIMIT_AS
(virtual memory cap). If both RSS and VMEM are to be limited under Linux, the smaller value is used with
RLIMIT_AS. Under FreeBSD, RSS limit is fully supported.

process_limits.vmem = {N}{suffix} ["0"]
Virtual memory cap = RLIMIT_AS. Used in place of RSS cap under Linux. Both Linux and FreeBSD fully
support it.

http_r ead_timeout_ms = milliseconds [200]
Timeout (in milliseconds) to read an HTTP-message portion.

user_request_timeout_ms = milliseconds [500]
Timeout (in milliseconds) for a user request to be processed.

admin_request_timeout_ms = milliseconds [300]
Timeout (in milliseconds) for an admin request to be processed.

module_request_timeout_ms = milliseconds [100]
Timeout (in milliseconds) for a module request to be processed. Module requests are those that go between
gxws and gxng.

http_data_content_type = type_specifier [application/octet-stream]
HTTP Content-Type for data payload.

channel_sample_timeout_ms = milliseconds [-1]
Pre-sample each new channel trying to read from it with the given timeout; unless -1 == timeout, then do
NOT pre-sample channels. NB: channels will be pre-sampled by gxws, which will therefore wait and suf-
fer the associated latency penalty.

USE WITH DISCRETION.

tput_stats.*
The following section specifies the parameters needed for engines to report traffic throughput statistics,
queried using report admin request. See gigaplus(1) for details on reports and admin request particulars.

Version 1.5 June 27, 2017 11

gxws(1) gxws manual page gxws(1)

tput_stats.enabled = true | false [true]
Do not provide channel/client statistics unless true. Please note that engines will use additional CPU cycles
to gather and calculate relevant statistics.

tput_stats.channel_path = posix_shmem_path [/gxy-cha.shm]
POSIX shared memory path for channel statistics (<= 32 characters).

tput_stats.client_path = posix_shmem_path [/gxy-cli.shm]
POSIX shared memory path for client statistics (<= 32 characters).

tput_stats.max_channel_records = num [250]
Max number of records (across all engines) in channel statistics. This should be no less than the maximum
number of channels to be handled at once.

tput_stats.max_client_records = num [1000]
Max number of records (across all engines) in client statistics storage. This should be no less than the maxi-
mum number of clients to be handled at once by all engines.

tput_stats.max_speed_delta = num [8]
Max difference (in Kb) between channel and client speeds. Speed delta is visible in TPS reports and will be
highlighted if delta gets exceeded.

report.*
The following section specifies the parameters needed to support generation of various reports.

report.default.type = name [traffic]
Default report type to use (with a URL not specifying one).

report.default.format = name [html]
Default report format to use (with a URL not specifying one).

report.memory.min = bytes [524288]
Initial memory for the spool buffer (to contain full report text prior to the output).

report.memory.max = bytes [16777216]
Maximum memory for the spool buffer (to contain full report text prior to the output).

report.max_send_attempts = num [16]
Max number of transfer/send/output attempts to take if cannot output all at once.

report.cache_timeout_ms = num [500]
Reports will be cached and served to subsequent requests within this timespan (ms), or NOT cached at all if
the value <= 0 (a fresh report will be generated for each request).

report.backup_file = filepath []
File to save each report into (overwriting the previous one). If empty, do NOT save.

Version 1.5 June 27, 2017 12

gxws(1) gxws manual page gxws(1)

sync.regular_timeout_ms = ms [500]
After a GNG attaches, synchronize (retrieve) channel/client stats from TPS cache in N ms after the attach.
Enabled only if TPS (tput_stats.enabled is true).

sync.forced_timeout_ms = ms [10000]
If at least one GNG is attached, synchronize (retrieve) channel/client stats from TPS cache every N ms.
Enabled only if TPS (tput_stats.enabled is true).

redirect.err_channel = channel_URL []
Redirect client (via HTTP 302) to channel_address if requested channel is unavailable (for any reason
other than an error in an internal component of gigaplus). Channel URL must be a full HTTP URL that
will be returned to client via HTTP 302 response.

redirect.no_access = channel_URL []
Redirect client (via HTTP 302) to channel_address if access to the requested channel has been denied (by
an authorization helper). Channel URL must be a full HTTP URL that will be returned to client via HTTP
302 response.

psensors.*
Performance sensors allow to measure resource utilization between two specific points within the applica-
tion, using the metrics provided by utime(2) utime(2) call at each end of the sensor. All sensor data will be
printed out at the application exit in the format similar to the output of time(1) utility.

Performance sensors are a debugging/profiling facility and incur additional load on the system.

USE WITH DISCRETION.

Defined sensors:
app = application runtime; ev_loop = event processing (all events); ev_read = reading/processing inbound
data; ev_write = writing/processing outbound data; ev_err = processing error events; ev_pp = post-pro-
cessing events; ws_userq = processing user requests; ws_admrq = processing administrative requests
(reports, etc.).

psensors.enable_all = true|false [false]
Enables all sensors if true, disables all otherwise. This is to initialize the set of enabled-sensor flags to
either all ones (if enabled) or all zeros. This setting is to be used in combination with psensors.except.

psensors.except = sensor_list []
Enables sensors in the list if psensors.enable_all is true, or disables those sensors if false. This way
enable_all is used to initialize the set of sensors while except narrows it down by enabling/disabling its spe-
cific elements.

EXAMPLE A:

psensors.enable_all = true; # Enable all sensors.

psensors.except = ["ev_read", "ev_write"]; # Disable those listed herein.

Enables all sensors except ev_read and ev_write.

EXAMPLE B:

Version 1.5 June 27, 2017 13

gxws(1) gxws manual page gxws(1)

psensors.enable_all = false; # Disable all sensors.

psensors.except = ["ev_read", "ev_write"]; # Enable those listed herein.

Enables ev_read and ev_write sensors, all others are disabled.

auth.*
Authorization helpers are user-defined applications (plug-ins) used by gxws to screen user requests, based
on request-specific data, such as user address, request URI, etc. gxws starts one or several helpers and
communicates with them via pipes connected to helpers’ STDIN and STDOUT streams. Example helper
scripts (a1p-auth.sh, b2p-auth.sh) for two supported protocols are provided in /usr/share/gigaplus/scrpts
under Linux (/usr/local/share/.. under FreeBSD).

auth.enabled = true|false [false]
Enable helpers unless false.

auth.helper_protocol = "A1P"|"B2P" ["A1P"]
Defines the communication protocol between gxws and auth helpers. A1P is the older/simpler protocol,
please see details in gxauth(5)

auth.b_fields = fields ["USDP"]
This B2P-specific setting defines the fields (and their order) to be sent to auth helpers for evaluation.
"USDP" stands for URL, Source, Destination and Peer - they will be sent to helpers in that order. Full list of
protocol-supported fields can be found in gxauth(5)

auth.exec = exec_path_with_params []
Specify full path to the helper executable with all command-line parameters. This constitutes a complete
absolute-path to the helper binary with all required command-line options and parameters. NB: all helpers
will be launched under user/group specified in run_as* settings.

auth.min_helpers = count [1]
Number of helpers to start with and always keep running.

auth.max_helpers = count [1]
Maximum number of helpers to run.

auth.deny_no_auth = true|false [false]
Deny access to URI/resource if authorization cannot be performed (due to an internal error). Allow by
default so that authorization framework failure would not result in denial of service.

auth.no_spawn_tmout = ms [5000]
Maximum time (ms) to disallow launching helpers after suspected cascading crashes. When a helper
crashes shortly after being launched, gxws disables further helper launches for the configured time period.

auth.aux_params = list_of_params []
Additional A1P-specific parameters passed to auth helpers. The available parameters are:

listener-alias = alias for the originating listener

Version 1.5 June 27, 2017 14

gxws(1) gxws manual page gxws(1)

auth.can_rewrite_endpoints = true|false [false]
Instructs gxws using B2P protocol to be ready to re-write Source or Destination endpoints if specified in
auth helper response message.

auth.allow_custom_urls = true|false [false]
Instructs gxws using B2P protocol to allow URLs that do not follow the two gigaplus-oriented patterns
(udp/address:port or src/s_url/dst/d_url). This setting should be true if auth helpers were to match custom
URLs to custom Source/Destination.

auth.cache.*
Negative authentication responses can be cached by gx This allows for much faster response when helpers’
time is at the premium and may better chances in case of a DOS attack. The cache’s eviction method is
LRU (least recently used) and each entry (source URL) has a time-out.

auth.cache.enabled = true|false [false]
Enable response cache if set to true.

auth.cache.max_records = num [5000]
Set the maximum number of items in cache. If the number goes higher, extra items will be LRU-evicted.

auth.cache.expiry_sec = num [300]
Set the lifespan of a cache item, in seconds.

hls.*
section is responsible for HLS-specific parameters.

hls.enabled = true|false [false]
allows HLS streaming requests, if set to true. Otherwise, further parameters in this section are ignored.

hls.data_root = path []
absolute path to the root directory for segment data files. gxws(1) uses this path in conjunction with the
channel-path in the segment (i.e. hls-fra) requests to compile full path to the requested segment file. For
instance, if the request is

http://acme.tv:5046/hls-fra/vol3/2017-07-03/60706956.ts then, with hls.data_root = /opt/data, the full path
to 60706956.ts would be: /opt/data/vol3/2017-07-03/60706956.ts. gxws uses the path to check whether the
file is accessible.

hls.request_timeout_ms = num [1000]
maximum time for gxws to process an HLS request. If I/O for such a request exceeds the limit, the request
is terminated.

HLS requests may need a different timeout since their control flow differs. The default value is assumed to
be sufficient, but may be adjusted according to the actual pattern. If set to 0, the timeout for HLS does not
differ from the one for linear-streaming requests (user_request_timeout_ms).

hls.m3u8_tmout_sec = num [30]
time (in seconds), gxws keeps a cached channel record for an HLS playlist (M3U8) request. When a client
requests a LIVE playlist, it usually means that the request is to be repeated when all playlist’s items have
been played back. For that purpose gxws caches the record created for the initial request for num seconds,
after that the record gets deleted. (See hls.gpm_socket.) If playlists normally last longer/shorted than the
default time, you might consider altering the value.

Version 1.5 June 27, 2017 15

gxws(1) gxws manual page gxws(1)

hls.fast_urq_len = N-bytes [0]
number of bytes in a user request after which gxws should attempt to process the received data, even if the
request is incomplete.

Some HLS clients (vlc one of them) send HLS M3U8 requests in little data portions making significant
pauses in between (beats me why they do it, but the fact remains). Often the most significant part, contain-
ing the requested URL, is received first, with other (less important) headers to follow. If gxws is to wait for
the full request (i.e. till CRLF,CRLF), it would often take too long, while the needed part is there from the
very beginning. This setting lets the logic push its luck and try to process the data as soon as we have N
bytes. With vlc, in my experience, this noticeably expedites the process. Yet, USE AT YOUR OWN RISK.

hls.gpm_socket = path []
full path to the user-request socket/listener of gxpm(1)

Example: hls.gpm_socket = "/tmp/gpm-Y.sock"

NOTE: gxws(1) requests a playlist from gxpm(1) every time a new HLS channel is created. It the stores
the path to the playlist in the channel record and services further requests for the same playlist from the
given file (which it expects gxpm to update). gxws also updates a special lock file (see lid.* section in
gxpm config) for gxpm to know that the playlist is being used.

hls.snooze_http11 = true|false [false]
permits to ’snooze’ an HLS-client connection after a successful request, instead of terminating.

If true, HTTP/1.1 keep-alive connections are not closed on gxws’s end; gxws waits (for N ms) for another
request to arrive or the connection to be terminated by the peer.

hls.conn_reuse_sec = N-sec [20]
number of seconds gxws(1) would wait for a ’snoozed’ HTTP/1.1 (idle) connection to be re-used (i.e. for a
new request on the socket).

hls.force_close = true|false [false]
close all HTTP/1.1 connections at the end of a (user) request, regardless of the keep-alive HTTP setting.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigaplus(1),gxng(1),gxpm(1),vsm(1),gxws.auth(5)

Version 1.5 June 27, 2017 16

channels.conf(5) gigapxy channel-group config manual page channels.conf(5)

NAME
channels.conf - Gigapxy channel-group configuration file.

DESCRIPTION
gws(1) uses channel-group configuration to define channel sources that could be referenced not by absolute
address but via an alias. An alias is a name prepended by a dollar-sign character. gws, as it processes a
URL, recognizes an alias and translates it to an absolute-address URL to be used as a source.

An alias creates a name-to-URL mapping for user requests.

An example channel-group configuration is provided with the installation at /usr/share/doc/gigapxy under
Linux or /usr/local/share/doc/gigapxy under BSD. channels is the top-level section, under which channel
groups are listed/defined. The parameters used in configuring a single channel group are as below:

alias
This is the name to be used in URLs with the dollar-sign prefix. The name/alias will be translated into one
of the URLs from the set defined for the given group.

urls
The URL to resolve the alias to. A URL may contain an alias but only to be resolved remotely (by the
gigapxy daisy-chained to the current one). In the future, more than one URL (with a load-balancing
option) may be supported for this setting.

Example
Below is an example of a channel configuration (supplied as a file in the package):

channels = (
{ alias = "TV5"; urls = ["file:///opt/prog/tv5/channel-down.ts"]; },
{ alias = "NightLife"; urls = ["udp://10.0.24.16:5054"]; }

);

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gxws(1)

Version 0.2 June 23, 2014 1

gxws.auth(5) gxws.auth (GigA+ authentication) manual page gxws.auth(5)

NAME
gxws.auth - GigA+ authentication manual.

DESCRIPTION
gxws employs helpers - custom scripts - to authenticate and authorize incoming user requests. Any appli-
cation reading from STDIN and responding via STDOUT could serve as a helper as long as it ’speaks’ one
of the two communication protocols: A1P or B2P. This page is dedicated to giving the insight into auth
helpers, employed protocols and associated capabilities.

Common features:
Both protocols have things in common. Firstly, they are textual and line-oriented: a message is a text string
ending with CRLF ASCII sequence (single LF symbol under Linux and FreeBSD). gxws writes mes-
sages/lines to helpers via unnamed pipes connecting to the helpers’ STDIN.

Message example: B10 P 134.12.12.50:5050

Messages contain fields, separated by whitespace. An empty (blank) value is always specified as - (dash).
Some fields are common for both protocols, the first field is always the same: Session ID.

Session-ID = A|B{1 .. 2147483647} [examples: A100, A1, B150433]
Identifies the request. The first symbol is protocol_id: ’A’ for A1P and ’B’ for B2P. The rest of the field is
session_number - non-zero 32-bit unsigned decimal integer; session ID in the incoming message should
match the one in the response.

Result-Code = {0 .. 2147483647} [examples: 0, 1, 111]
32-bit unsigned decimal integer, specifies the result of the evaluation. Only 0 (zero) code is treated as
APPROVE response, all others currently signify authorization failure.

A1P request:
A1P uses pre-defined sequence of mandatory and optional fields in each request/response message.

The request fields are: Session-ID Peer Source Destination [Listener] (the last field is optional and is added
only if ws.auth.aux_params value contains listener-alias).

A1P request example: A102 10.0.1.15:30403 udp://224.0.2.25:3030 - bb1

Peer = address:port
Address/port of the client (that sent the original request to gxws)

Source = channel URL
URL of the requested channel, as specified either in udp or src section of the request URL.

Destination = client URL
URL for the destination. For most requests, destination is the socket/connection that started the request (i.e.
peer), empty value (dash) is used to specify it.

Listener = alias
Alias of the listener that accepted the request. Do mind that when using this option, alias must be specified
for each listener in gxws.conf.

Version 0.1 September 19, 2017 1

gxws.auth(5) gxws.auth (GigA+ authentication) manual page gxws.auth(5)

A1P response:
A1P response example: A102 0

B2P protocol
B2P is an extension of A1P protocol that mainly addresses the inflexibility of A1P (fixed number of fields
come in and come out). The core features that drove towards creating a new protocol were: a) custom URLs
and b) endpoint (source/destination) re-write capability. B2P accommodates both of these features and pro-
vides future expansion of functionality. B2P adds one mandatory field to Session-ID, the Field-Mask.

Field-Mask = [a-z][A-Z]{16} [example: USDP]
Specifies the fields (up to 16) that will follow (in the order they will appear). A single symbol is designated
to each of the recognized fields, the mask is, in effect, a sequence of field identifiers.

Field identifiers:
U = Request-URL - the B2P field that holds URL for the HTTP request, the way it was in the header.
Example: /udp/224.0.4.56:4504

S = Source

D = Destination

P = Peer

A = User-Agent

L = Listener

r = Result-Code

Field-Mask ’USDP’ means that the message, besides the mandatory two fields, must have four fields of the
corresponding types. gxws.conf provides ws.auth.b_fields setting to specify what information gxws will
send to auth helpers with every B2P message.

B2P request:
Example B2P request: B102 UPL /udp/224.0.2.26:5034?auth=0x93fb0ad 10.0.3.14:40987 bb1

Some fields (r) don’t make much sense in the request and will be rejected by gxws if specified.

B2P response:
It’s up to the helper implementation what set of fields would be returned, but at least one field should be.
Absense of Result-Code is assumed as APPROVE as long as other fields are present in the response. With
all the flexibility , only certain fields will be accepted in by gxws in the response message.

Response-approved fields:
S = source will be re-written to the returned value

D = destination will be re-written to the returned value

r = APPROVE if 0, DENY otherwise.

A typical B2P denial response would be: B102 r 111 (Don’t you worry about 111, any non-zero number
would do).

Custom URLs and source re-write
B2P (and appropriate settings in ws.auth config section) allows completely opaque URLs to be converted
to gigapxy-compliant source/destination pairs. Request-URL field matched to helper-specific endpoints

Version 0.1 September 19, 2017 2

gxws.auth(5) gxws.auth (GigA+ authentication) manual page gxws.auth(5)

allows to reply with the appropriate Source (and Destination is needed) and let gxws know what the end-
points are.

Here’s an example scenario:

GET /dc03d03332f09a is the original HTTP request as read by gxws.

The auth config specifies:
auth: {

enabled = true;
helper_protocol = "B2P";
b_fields = "USP";
exec = "/usr/local/bin/b2p-auth.sh /var/log/gigapxy/auth.log";
deny_no_auth = true;
can_rewrite_endpoints = true;
allow_custom_urls = true;

};

allow_custom_urls lets gxws ignore that the URL could not be parsed into gigapxy endpoints, so both
Source and Destination remain empty after request has been parsed.

gxws sends a B2P request: B1 USP /dc03d03332f09a - 10.0.14.26:40987

Please note that Source is empty in the request and could be omitted if we know it’s never needed by the
helper. The helper translates the data (using its own logic) into the following response:

B1 S udp://226.0.3.14:6060

gxws reads the response and assumes the request is APPROVED (no r field but another field present). It
then takes udp://226.0.3.14:6060 as the source endpoint, directing to read from the given multicast chan-
nel.

Where do I begin?
Having decided which features you’d need and thus which protocol to select, make a copy of the corre-
sponding example helper in /usr/share/gigapxy/scrpts under Linux (/usr/local/share/.. under FreeBSD).
If you understand the logic, but dislike /bin/sh, use any other language. Once your helper (kind of) works,
make a text file (requests.txt) with sample requests (the kind you’d be most likely processing) and run:

cat requests.txt | auth-helper /var/log/helper.log

The output will be the response messages. If somethig does not quite work, the log (where your script
writes) should help.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigaplus(1),gxws(1),gxng(1)

Version 0.1 September 19, 2017 3

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

NAME
gxng - GigA+ streaming engine daemon.

SYNOPSIS
gxng [-h?TvVq] OPTIONS

DESCRIPTION
gxng is the GigA+ engine module performing I/O on behalf of data requests submitted to gxws. The format
of gxws requests is described in the gxws(1) manpage.

gxng attaches to the specified gxws upon start-up; up to 64 engines may attach to a single gxws (the limit
is artificial). The controlling gxws relays (pre-processed) data requests to the attached engines for execu-
tion.

gxng takes its parameters from a configuration file, which is either gxconf or gigaplus.conf by default and
can contain sections for any or all GigA+ modules. gxng will look for the default configuration in a) cur-
rent directory; b) /etc; c) /usr/local/etc. Path to a specific configuration file could be given at com-
mand-line (see OPTIONS). Configuration options for gxng are described in detail in the CONFIGURA-
TION section of this page.

gxng re-reads its configuration in response to SIGHUP. gxng will force-rotate its log in response to
SIGUSR1.

OPTIONS
gxng accepts the following options:

-h, --help, -?, --options
output brief option guide. This is NOT the behavior when run without parameters.

-C, --config path
specify configuration file.

-l, --logfile path
specify log file.

-p, --pidfile path
specify pid file.

-w, --gxws path
specify path to the controlling gxws (domain socket).

-T, --term
run as a terminal (non-daemon) application. This is the default behavior when gxws is run by a
non-privileged user. -T could be specified when run as root in order NOT to become a daemon,
for instance, for debugging purposes.

-v, --verbose
set the level of verbosity in the output. This option could be repeated to get to the desired level,
which is 0, unless the option is used at least once. Level 0 will reduce output to the very essential
log entries of NRM (normal) priority; level 1 will set verbosity to output to INF (info): suitable
for monitoring but not debugging; level 2 will enable DBG (debug) level for most (but not all)
application modules (please mind that bufd is NOT at debug at level 2); level 3 will set DBG
(debug) for additional modules, including bufd; level 4 will set all modules to debug. This switch
has a rather inflexible nature, for more precise setting of log levels please use config settings

Version 1.5 July 3, 2017 1

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

alone.

-V, --version
output application’s version and quit.

-q,--quiet
send no output to terminal. This is to supress any output normally sent to standard output or error
streams. Unless specified, when run from a non-privileged account, gxng will mirror diagnostic
messages sent to the log (as specified with the -l option) to standard output.

-P,--cpu
Set CPU affinity for the main process. This option allows to restrict the main gxng process to the
given CPU/core (numbered from 0 to N-1).

-K, --syskey
generate system key (to use in licensing) and exit.

CONFIGURATION
gxng(1) reads configuration from either gxng.conf or gigaplus.conf (in current directory, /etc or
/usr/local/etc), unless -C option was used. After reading and validating the config it applies whatever
changes come from the command-line.

Once all the parameters are read by gxng, the daemon operates with those values util the configuration is
re-loaded in response to SIGHUP.

All gxng(1) settings begin with the ng. prefix, as in section.param. Therefore, what’s referenced below as,
for instance aa.bb, should be ng.aa.bb in the config file. A configuration file could contain non-ng settings
too; gxng will ignore those.

The configuration settings are given below. The default value for a setting is given in square brackets as
[default]. Parameters without default values are mandatory.

ng_socket_path = path [/var/run/gpx-ngcomm.socket]
is the domain socket path for communications between gxws and the attached gxng’s.

log.level_default = err| crit| warn| norm| info| debug [info]
Defines the level of verbosity for the log.

log.file = path
Full path to log.

log.max_size_mb = num [16]
Maximum file size (in Mb, i.e. 1048576-byte chunks). Log is rotated when this size is exceeded. gxng will
force-rotate its current log in response to SIGUSR1.

log.max_files = num [16]
Maximum number of files to rotate to. The next rotation after this limit removes the oldest rotated log.

log.time_format = local| gmt| raw| raw_mono| no_time| [local]
Sets format to display timestamps for log entries. local will loglocal-timezone specific time in YYYY-
MM-DD HH24:MI TZ format. gmt will log GMT time in the same human-readable format as local; raw
logs high-resolution time as the number of seconds.nanoseconds since the Epoch (1970-01-01 00:00:00

Version 1.5 July 3, 2017 2

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

UTC); raw-mono logs system-specific monotonic time (used for timespan measurement, not correlated to
clock time). no_time logs no time at all.

log.show_pid = true|false [true]
Display PID as a log entry field.

log.enable_syslog = true|false [true]
Write errors, warnings and critical messages to syslog(2).

pidfile.dir ectory = dirname [/var/run/GigA+]
Directory for the pidfile (must be writable by run_as_user).

pidfile.name = filename [gxng-{user_port}.pid]
Name (w/o directory part of the path) of the pidfile, the default value uses the user-request listener port
number.

idle_clk_ms = milliseconds [-1]
Time (ms) to wait before doing any idle-time tasks, -1 = no limit. This sets the resolution (or granularity)
for the timeouts or any other tasks done in idle time. The default value (-1) will have it perform idle tasks
only when an actual event (connection, signal, etc.) interrupts the wait loop. gxng will set the idle clock to
the minimum value of a channel/client timeout.

run_as_user = username []
Run as this user when running as a daemon (if empty, do not switch).

run_as_uid = uid [-1]
Run as the given user (uid) when running as a daemon (if -1, do not switch). If gid is not specified, then
gid = uid. uid > 0 will override run_as_user.

run_as_gid = gid [-1]
Run in the given group (gid) when running as a daemon (if -1, gid = uid).

non_daemon = true | false [false]
If started as root, become a daemon if true.

enforce_core_dumps = true | false [false]
When set to true, the process invokes the necessary syscalls to make itself core-dumpable and set core limit
to unlimited. The default value of false leaves it to the shell defaults. NB: Under certain Linux versions,
UID-changing daemons become non-core-dumpable (see /proc/sys/fs/suid_dumpable and prctl(2) for
details).

no_rtp_strip = true | false [false]
When set to true, the engine does not attempt to convert RTP-over-TS into plain TS datagrams (enabled by
default). When ’stripping’ is disabled, gxng would consider RTP packets as non-TS and relay them AS-IS.

use_sendfile = true | false [true on FreeBSD otherwise false]
Prefer to use sendfile(2) to send out data. This makes a big difference on FreeBSD, which implements zero-
copy through this syscall. Setting this to true on Linux may or may not improve performance (so it’s false
by defaylt under Linux).

Version 1.5 July 3, 2017 3

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

quiet = true | false [false]
No output to stdout/stderr if true.

cpunum = -1 | 0 .. N [-1]
Set affinity to CPU #N (zero-based) for this process, unless -1 (or <0).

process_limits.rss = {N}{suffix} ["0"]
Resident memory cap: a process cannot exceed this amount in resident memory, memory allocation call(s)
should fail. NB: This limit cannot be enforced under Linux, where it would be replaced by RLIMIT_AS
(virtual memory cap). If both RSS and VMEM are to be limited under Linux, the smaller value is used with
RLIMIT_AS. Under FreeBSD, RSS limit is fully supported.

process_limits.vmem = {N}{suffix} ["0"]
Virtual memory cap = RLIMIT_AS. Used in place of RSS cap under Linux. Both Linux and FreeBSD fully
support it.

max_channels = num [200]
Maximum number of channels allowed (per engine).

max_channel_clients = num [500]
Maximum number of clients per single channel.

channel_io_timeout_sec = seconds [5]
Maximum time (in seconds) to wait on I/O for a channel.

client_io_timeout_sec = seconds [5]
Maximum time to wait on I/O for a client.

client_busy_timeout_sec = seconds [86400 = 24 hours]
Maximum time for a client session.

can_extend_clients = true|false [false]
If a client times out, check if there’s pending (channel) data and the client is writable. If writable, extend its
wait period (just this one time) by client_io_timeout_sec.

client_socket_sndbuf_size = bytes [system default]
Client (sending) socket send buffer size (bytes).

channel_socket_rcvbuf_size = bytes [system default]
Channel (receiving) socket buffer size (bytes).

channel_lo_wmark = bytes, 0 = none [0]
Low watermark for channel sockets.

client_tcp_cork = true|false [false]
Use Linux TCP_CORK socket option to aggregate client packets. Linux only.

Version 1.5 July 3, 2017 4

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

client_tcp_nopush = true|false [false]
Use BSD TCP_NOPUSH socket option to aggregate client packets. BSD only.

multicast_ttl = hops [2]
Multicast TTL value set for the outgoing mulitcast traffic.

tput_stats.*
The following section specifies the parameters needed for engines to report traffic throughput statistics,
queried using report admin request. See gxws(1) for details on reports and admin request particulars.

tput_stats.enabled = true | false [true]
Do not provide channel/client storage unless true. Please note that engines will use additional CPU cycles
to gather and calculate relevant statistics.

tput_stats.channel_path = posix_shmem_path [/gxy-cha.shm]
POSIX shared memory path for channel storage (<= 32 characters). Note: should match the corresponding
gxws setti

tput_stats.client_path = posix_shmem_path [/gxy-cli.shm]
POSIX shared memory path for client storage (<= 32 characters). Note: should match the corresponding
gxws setti

tput_stats.channel_report_ms = milliseconds [5000]
Report channel throughput every N milliseconds. (Will save the statistics in shared memory.)

tput_stats.client_report_ms = milliseconds [5000]
Report channel throughput every N milliseconds. (Will save the statistics in shared memory.)

tput_stats.max_packet_delta = bytes [-1]
Warn if two consecutive packets differ by more that N bytes, -1 = ignore. This setting allows to watch out
for inconsistencies in the UDP streams, where all messages are supposed to be of the same size.

USE WITH DISCRETION.

ws.*
section decribes the parameters of communication between gxng and gxws.

ws.max_reconnects = num [10]
Attempt N reconnects with gxws, unlimited if -1, none if 0. If the controlling gxws crashes, gxng makes a
number of attemtps, separated by pauses, to re-attach to it. Therefore, if a monitor on the crashed gxws
restarts it successfully, the formerly-attached gxng’s may re-attach.

ws.reconnect_delay = milliseconds [500]
Delay (in milliseconds) between reconnect attempts.

bufd.*
The following section specifies the parameters for the internal cache used by gxng to multiplex access to
channel data. For each channel (that needs to be cached) gxng maintains a chain of buffers, representing

Version 1.5 July 3, 2017 5

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

consecutive segments for traffic data.

bufd.keep_files = true | false [false]
Do not unlink(2) bufd files (make them visible). This is a debugging option.

USE WITH DISCRETION.

bufd.mmap_files = true | false [true]
Map bufd files into memory. Results in faster access to cache but may exhaust host memory.

bufd.mmap_anon = true | false [false]
Allocate buffers in memory w/o using any filesystem space (i.e. buffers are not backed up by files). This
option provides the fastest access to cache but is limited by process’s memory constraints.

bufd.mlock = true | false [false]
mlock(2) data buffers into physical memory. Make sure your system parameters allow this, for reference
see mlock(2) manpage.

bufd.data_dir = pathname [/tmp]
Directory to place bufd files into.

The following three settings affect the way gxng caches data. There is a certain amount that can be kept per
channel to ensure that new clients can start receiving data without delay. The settings below regulate that
amount and set the point (in the cache) from which data gets served to a new client.

bufd.min_total_duration_sec = seconds [5]
Minimum of data cached for a channel, measured in time it took to receive it. No channel buffers get recy-
cled until this much data has been saved. The exact amount preserved in cache could be a above but never
below the imposed threshold; gxng would recycle a buffer only if, after its removal, the cache would still
have >= seconds worth of data.

bufd.min_total_size = bytes [1048576]
Minimum of data cached for a channel, in bytes. No channel buffers get recycled until this much data has
been saved.

The two settings above work in tandem, each of them setting a threshold. gxng will consider that enough
data has been cached as soon as either or both of those thresholds have been reached: if, for instance, the
first setting is 5 seconds and the second one is 10485760 bytes (10 Mb), then enough is as soon as we’ve
cached 10Mb or accumulated more than 5 seconds worth of data (if the channel is slow, it may be less than
10Mb).

Channel data is stored as a sequence of buffers, from the most-recently-received one - the HEAD, to the
oldest one - the TAIL.

A newly-joined client/subscriber needs the first data buffer to start with. The setting below defines the
algorithm gxng would use to pick one.

Version 1.5 July 3, 2017 6

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

bufd.start_mode = 0 | 1 | -1 | 2 [1]
Defines the method to pick the initial buffer for a client:

0 (HEAD) picks the most-recently-received buffer, offset: 0 (cached: all of the most recent buf-
fer).

2 (EDGE) picks the most-recently-received buffer, offset: END-OF-DATA (no data cached).

1 (MIN_CACHED) picks the buffer that allows to transfer N seconds or M bytes of data, offset: 0
(cached: N seconds/M bytes).

-1 (TAIL) picks the oldest buffer in cache, offset: 0 (cached: all current data for the channel).

All the above methods, except EDGE (2) position a new client at zero offset in the selected buffer. This
way there is always some data to send to the client right away, without I/O wait. EDGE ensures a no-cache
policy: only the data received during the client’s lifespan gets relayed to the destination.

MIN_CACHED (1) uses bufd.min_total_duration_sec and bufd.min_total_size to determine which buffer to
pick. The algorithm starts at the HEAD and moves towards the tail accumulating the volume and time for
each buffer it lands on; as soon as either of the thresholds is reached, the buffer is selected as the one to
start at.

bufd.burst_mode = 0 (none) | 1 (scan) | 2 (burst) [1]
Defines the method used to prevent excessive growth of buffer chains using a ’bubble-burst’ technique. A
’bubble’ is a (long) sequence of unused buffers (U) squeezed in between a small number of active buffers
(A). A slow client may claim (lock on) a buffer and then slow down, while other clients go ahead. The tail-
side buffer would be still locked while the buffers towards the head get used and un-locked: AAUUUUUU-
UUUUUA. The U-sequence is the ’bubble’. In mode 1 (scan) gxng scans a channel looking for a bubble
(and warns if it finds one), in mode 2 (burst) it also tries to invalidate the leftmost A-buffer and release the
underlying U-sequence (the bubble).

bufd.max_unit_count = num [128]
Maximum number of buffers for all channels within the given gxng instance. Not all buffers, as a rule, get
allocated at once. This sets the limit to the number of buffers across all channels.

bufd.prealloc_count = buffers [max_unit_count / 4]
Number of shared buffers to pre-allocate at the engine’s start.

bufd.max_units_per_channel = num [1/3 of max_unit_count, yet within 4..12 range]
Maximum numbers of buffers per channel. Setting this to a well-balanced value will provide for fair distru-
bution of buffers across channels and will prevent hogging buffer space by channels with slow clients.

bufd.max_unit_size = bytes [16777216]
Maximum number of bytes in a single buffer. When this threshold is hit, another buffer is added to cache.

bufd.max_dgram_size = bytes [1500]
Maximum size of a (UDP) datagram expected (should not exceed MTU). NB: must be adjusted if using
jumbo frames.

bufd.max_unit_duration_sec = seconds [30]
Maximum duration (seconds) of a single buffer. When this threshold is hit, another buffer is added to cache.

Version 1.5 July 3, 2017 7

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

bufd.allow_emergency_recycle = true | false [false]
Allow to force-recycle the oldest buffer when cannot allocate a new one.

transfer_buffer_size = bytes [1048576]
Size of the intermediate buffer used to facilitate I/O. This setting is unused when cache buffers are mem-
ory-mapped.

cli_write_delay.*
This section regulates delaying data output to reduce the number of write(2) syscalls. Data is accumulated
until the saved portion is large enough.

cli_write_delay.enabled = true|false [true]
Write delays are enabled if set to true.

cli_write_delay.timeout_ms = delay_ms [100]
Delay for no more than N milliseconds.

cli_write_delay.max_buffered = max_bytes [1048576]
Delay up to max_bytes of data, disregard if 0.

psensors.*
Performance sensors allow to measure resource utilization between two specific points within the applica-
tion, using the metrics provided by utime(2) utime(2) call at each end of the sensor. All sensor data will be
printed out at the application exit in the format similar to the output of time(1) utility.

Performance sensors are a debugging/profiling facility and incur additional load on the system.

USE WITH DISCRETION.

Defined sensors:
app = application runtime; ev_loop = event processing (all events); ev_read = reading/processing inbound
data; ev_write = writing/processing outbound data; ev_err = processing error events; ev_pp = post-pro-
cessing events; ng_chaio = channel data I/O; ng_clio = client data I/O.

psensors.enable_all = true|false [false]
Enables all sensors if true, disables all otherwise. This is to initialize the set of enabled-sensor flags to
either all ones (if enabled) or all zeros. This setting is to be used in combination with psensors.except.

psensors.except = sensor_list []
Enables sensors in the list if psensors.enable_all is true, or disables those sensors if false. This way
enable_all is used to initialize the set of sensors while except narrows it down by enabling/disabling its spe-
cific elements.

EXAMPLE A:

Version 1.5 July 3, 2017 8

gxng(1) gxng (GigA+ streaming engine) manual page gxng(1)

psensors.enable_all = true; # Enable all sensors.

ws.psensors.except = ["ev_read", "ev_write"]; # Disable those listed herein.

Enables all sensors except ev_read and ev_write.

EXAMPLE B:

psensors.enable_all = false; # Disable all sensors.

psensors.except = ["ev_read", "ev_write"];

Enables ev_read and ev_write sensors, all others are disabled.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigaplus(1),gxws(1)

Version 1.5 July 3, 2017 9

gxpm(1) gxpm manual page gxpm(1)

NAME
gxpm is a playlist manager for GigA+.

SYNOPSIS
gxpm -Y ipath -S spath -C config [OPTIONS]

DESCRIPTION
gxpm(1) compiles playlists (in M3U8 format) in response to requests by gxws instances for various chan-
nels (sources). Channel meta-data arrives from vsm (via gxseg) to the gxpm’s source socket (spath). From
the item socket (ipath) gxpm(1) responds to requests from gxws: assembles and relays playlists.

PARAMETERS
The following parameters are accepted:

-Y, --items ipath
specifies path to the item UNIX socket, servicing gxws requests.

-S, --sources spath
specifies path to the source UNIX socket, ingesting channel meta-data from vsm instances.

-C, --config path
configuration file (gxpm.conf by default).

OPTIONS
The following options are accepted:

-D, --appdata path
path to playlist data (/tmp by default). This is the root for item data, one level above the directory
for the particular channel. gxpm uses this path as a base for channel-related data. So, if vsms use
a common data root for all channels, this would be it. Ignored if channel-specific directories are
reported by vsm (that is, if cha_ROOT is in the channel spec). Please see vsm(1) for details.

-F, --prefix URL
URL prefix for all playlist items, unless a channel specifies custom prefix by cha_PFX in the
spec. Please refer to vsm(1) for details.

-l, --logfile path
path to log file. Please do mind access permissons for the directory and kindly take --runas
option (see below) into account.

-L, --level crit|err|norm|warn|info|debug
log level. The default level is info, unless specified otherwise in config.

-p, --pidfile path
path to pid file.

Version 1.5 June 26, 2017 1

gxpm(1) gxpm manual page gxpm(1)

-u, --runas username
user to run as if started as a daemon. Starts as root (in daemon mode) by default. NB: kindly
avoid running gxpm(1) as root.

-T, --term
run as a terminal (non-daemon) application. This is the default behavior when run by a non-privi-
leged user. -T could be specified when run as root in order NOT to become a daemon, for
instance, for debugging purposes.

-V, --version
output application’s version and quit.

-v, --verbose
set the level of verbosity in the output. This option could be repeated to get to the desired level,
which is 0, unless the option is used at least once. NB: this option is deprecated, please use -l,
--logfile path instead.

-q,--quiet
send no output to terminal. This is to supress any output normally sent to standard output or error
streams. Unless specified, when run from a non-privileged account, the module will mirror diag-
nostic messages sent to the log (as specified with the -l option) to standard output.

-h, --help, -?, --options
output brief option guide. This is output when run without parameters.

-K, --syskey
generate system key (to use in licensing) and exit.

CONFIGURATION
gxpm(1) uses a configuration file for most settings, the path to the file must be specified at command line.
The module starts by initializing config setting to default values, then loading the settings it finds in the
config file (thus, overriding the defaults) and then overriding config values with those specified from the
command line. An example gpm.conf is supplied with the package.

All config settings have gpm. prefix (no x), therefore, for instance, setting A fully reads in config as gpm.A.
The configuration settings are as below:

src_socket = path []
path to the source UNIX socket, ingesting channel meta-data from vsm instances.

pl_socket = path []
path to the item UNIX socket, servicing gxws requests.

log.*
log file settings:

file path to the log file.

level log level: crit|err|norm|warn|info|debug

Version 1.5 June 26, 2017 2

gxpm(1) gxpm manual page gxpm(1)

max_size_mb = N
maximum log size in MB (1MB = 1048576). Every time a log file reaches above this size it is
renamed as an archive and a fresh log is started.

max_files = n
maximum number of log files before rotation. Every time the number of archive logs exceeds
this number, the oldest archive is removed.

runtime.*
settings regulating how the application starts/runs.

pidfile []
path to the pidfile (no pidfile unless specified).

run_as_user username []
run as username if started as a daemon. Running as root by default.

non_daemon = true|false [false]
run as a terminal (non-daemon) application. By default, an instance started under root runs as a
daemon.

data_dir = directory [/tmp]
path to playlist data (/tmp by default). This is the root for item data, one level above the directory for the
particular channel. See -D option (above) for details.

item_url_pr efix = URL []
string to prepend every playlist item URL with. This could be used if all sources use a common data root
and, therefore, setting cha_PFX for each channel becomes redundant.

max_sources = N [256]
how many channels/sources shall one instance handle at the max? [1..1024]

max_src_tasks = N [256]
how many playlists/tasks can there be per single channel/source? [1..512] It actually depends. You need
only one task for all live-playlist requests, but every DVR request might as well be unique. Use your own
judgement.

max_playback_time = sec [604800] = 1 week
how many seconds worth of data should be stored per source/channel? [600..5184000] Usually, it also
depends on a channel and could be set via cha_CAPACITY in vsm channel spec.

max_live_items = N [6]
maximum items per LIVE playlist. [4..64]

src_tmout_sec = sec [30]
time out sources (with no tasks/playlists) after N seconds of no input. [1..300]

task_tmout_sec = sec [20]
discard playlist/task if untouched for N seconds [1..100]. gxpm creates an access-tracking (.alk) file per
playlist/task that it expects gxws to modify each time it reads the particular playlist. gxpm checks the modi-
fication timestamp regularly and expires the playlist if last modification time is more thant N seconds
behind.

Version 1.5 June 26, 2017 3

gxpm(1) gxpm manual page gxpm(1)

gzip_playlists = true|false [true]
generate compressed LIVE playlists (EVENT, VOD are always gzipped) gzip(1)

verify_item_filesize = true|false [true]
verify that reported segment files exist and have the declared size. vsm reports both paths to segments and
their size to gxpm. This option makes sure the information is correct.

use_sid_playlist_dir = true|false [false]
place generated playlists into a subdirectory, named after the cha_ID of the source. vsm passes cha_ID and
cha_ROOT from the channel spec. If the above parameter is true, then the playlist path uses cha_ID as a
subdirectory under the root and places all channel’s playlists there. Otherwise, playlists are placed into the
cha_ROOT and prefixed with cha_ID. For instance, let cha_ID = ’CNN’ and cha_ROOT = ’/opt/channel’.
Then, with true, a path to a playlists for the channel may be: /opt/channel/CNN/playlist.m3u8; otherwise it
would be /opt/channel/CNN-playlist.m3u8.

refresh_playlists = true|false [false]
refresh each dynamic playlist (LIVE, EVENT) on every change affecting it. If set to false (default), a
playlist is refreshed only when user requests a corresponding task.

md_report.*
settings to report segment meta-data to dwg(1) via multicast. gxpm publishes segment meta-data mes-
sages to a designated multicast group. Subscribers within the (multicast) network can extract segment
URL’s from these messages and download segments.

enabled = true|false [false]
no meta-data sent (and further parameters in this section ignored) unless true.

pub_url = multicast-URL []
URL of the multicast group to publish to. Example: udp://227.3.2.160:2020

lid.* = { task-lock parameters }
defines parameters for a task lock created by a recepient for each processed message. dwg needs
the lock to avoid redundant downloads. If N > 1 dwg instances run on a host, each of them sub-
scribes to pub_url group, but only instance per task is required. gxpm encapsulates a task-lock
ID into each message. Each dwg instance, upon receiving a message, tries to (atomically) create a
new lock file. If the file is already there, the task is already taken and the message is skipped.
The parameters are: prefix = symbolic prefix, min = N (N > 0), max = M (M > N). The number
rolls over to min after reaching the max. Example: lid: { prefix = "h1"; min = 100; max = 299; };

src_base = URL
is the URL prefix to use for downloading. If a web server has been set up so that the data root
directory for the segments is mapped to http://acme.tv:8080/seg, then this would be the value to
use. A segment with the relative path of CNN/20170627-11/6298994298.ts should then map to a
resolvable URL: http://acme.tv:8080/seg/CNN/20170627-11/6298994298.ts.

mcast_ifc = interface
interface name for the multicast network. Example: eth0

Version 1.5 June 26, 2017 4

gxpm(1) gxpm manual page gxpm(1)

AUTHORS
Pavel V. Cherenkov

SEE ALSO
vsm(1),gxseg(1),gxws(1),dwg(1)

Version 1.5 June 26, 2017 5

gxseg(1) gxseg manual page gxseg(1)

NAME
gxseg is a stream segmentation utility within GigA+.

SYNOPSIS
gxseg -i infile [OPTIONS]

DESCRIPTION
gxseg(1) is the tool for slicing a source stream into segments. vsm(1) calls it with the options defined by
the channel spec. For historical reasons, it uses no config file, all options are selected at the command line.
gxseg uses libav libraries from ffmpeg(1) and therefore inherits some of its traits. This tool is not to be
called directly, vsm(1) calls it when needed. This page is strictly for reference and to promote understand-
ing of all the tools within GigA+.

OUTPUT STREAM
gxseg outputs important metadata into STDOUT, all diagnostic and debugging messages go to STDERR.
This is done so that the utility could be pipelined to other modules. In GigA+ the module down the pipe-
line is wux(1) relaying STDOUT from gxseg to gpm(1) in an orderly fashion. For details on the output
metadata, please refer to the STANDARD OUTPUT FORMAT section below.

PARAMETERS
The following mandatory parameters are accepted:

-i|--source infile
URL for the source in ffmpeg(1) URL format.

-N|--channelid string
unique identifier for the source channel. gxseg uses it to form the full path to the channel’s data directory.

OPTIONS
The following options are accepted:

-o|--outfile path|copy []
path to M3U8 playlist, <infile>.m3u8 if ’copy’. If outfile is specified, gxseg creates a LIVE M3U8 playlist
at the specified path, refreshing it with every added item. If copy is given as the path, extension of the infile
is replaced with m3u8 and forms the resulting path for the playlist. If the parameter is omitted playlist gen-
eration is skipped.

-3|--m3upfx prefix
URL prefix for M3U8-playlist paths. This is the prefix to put in front of every playlist item’s path. For
instance, with prefix=http://acme.tv:4040/seg, for data/CNN/t34932001.ts the playlist URL would be
http://acme.tv:4040/seg/data/CNN/t34932001.ts.

-1|--logstdout path
mirror STDOUT to the designated file.

-1|--logstderr path
mirror STDERR to the designated file.

Version 1.5 June 29, 2017 1

gxseg(1) gxseg manual page gxseg(1)

-S|--storage dirpath [.]
base directory for segment files, current directory by default.

-R|--relpaths p1:p2:..:pK
comma-separated paths to storage shards. For more detailed info on shards in GigA+, please refer to the
cha_SHARDS parameter of the channel spec in vsm(1) documentation.

-G|--granularity mask
granularity time-mask, in the strftime(2) format. For details, please see cha_GRAN_MASK parameter of
the channel spec in the vsm(1) documentation.

-U|--duration sec [5]
segment duration in seconds.

-M|--mux content-mask [vas]
types of context to multiplex (include), where v=video, a=audio, s=subtitles.

-P|--profile name []
channel profile/quality tag. Presently unused.

-l|--loglevel num [1]
ffmpeg(1) log level (for libav libs).

-m|--maxseg M [100]
max number of segments per LIVE playlist num=1..100. After M is hit, the app removes the oldest item.

-J|--joint N [0]
compile joint segments out of N < M regular ones. Presently unused.

-F|--falseroot path []
initial base directory, until synced. See cha_FALSE_ROOT parameter of the channel spec in vsm(1) doc-
umentation.

-W|--markerdir path [/tmp]
directory for PTS-marker files. To conduct a roll-over, gxseg runs for a while as a backup instance and
generates files containing PTS for the last-generated segment. This parameter designates the directory for
such files. For details on the roll-over process, please refer to cha_ROLLO VER parameter of the channel
spec in the vsm(1) documentation.

-u|--pidscrid [false]
use PID, not channelid as sourceID. gxseg begins work with outputting a source-identifying message for
the channel that would be segmented by this instance. If this parameter is true, the app would use process
ID (pid) as the unique identifier for the channel, not the value set with the -N|--channelid parameter.

-a|--maxstore sec [0 = none]
define storage quota for the channel. Setting this parameter >0 adds the max_sec=sec parameter to the
source-identifying message (for vsm to consume). The parameter tells vsm how much data is to be stored
for this channel. See cha_CAPACITY parameter in the vsm(1) documentation.

Version 1.5 June 29, 2017 2

gxseg(1) gxseg manual page gxseg(1)

-p|--pidfile path [false]
create pidfile, quit if file or process already exists.

-d|--alang l1,l2,.. [false]
order audio tracks per language list. Presently unused.

-A|--intmout sec [10]
exit if no input within N seconds.

-E|--encrypt spec-path []
use spec to write encryption tasks to STDOUT. Presently unused.

-T|--thumbnail seconds [off]
generate JPG thumbnail every N seconds.

-t|--maxthumbs N [0]
maximum number {0..99} of thumbnails to keep.

-g|--png [false]
generate PNG thumbnails (instead of JPEG).

-e|--errignore [10]
maximum number {-1..MAXINT} of non-critical I/O errors in a row to ignore; -1 = all.

-H|--errbadtime [0]
maximum number {-1..MAXINT} of invalid PTS/DTS errors in a row to ignore; -1 = all.

-s|--suspend [false]
await SIGUSR2 after start.

-k|--keepseg [false]
keep all segments (do not rotate).

-X|--exitonerr [false]
exit(3) on critical errors. If not set, gxseg repeatedly tries to re-open source stream and re-initialize the
segmentation process after a critical error. (NB:: every re-initialization LEAKS MEMORY from libav.)

-D|--dummy [false]
output nothing to files. Presently unused.

-I|--interleave [false]
use interleaved I/O (libav) if set.

-Z|--gzipm3u8 [false]
make GZIP’ed playlists.

Version 1.5 June 29, 2017 3

gxseg(1) gxseg manual page gxseg(1)

-h, --help, -?, --options
output brief option guide. This is output when run without parameters.

-q|--quiet [false]
minimum logging.

-K, --syskey
generate system key (to use in licensing) and exit.

STANDARD OUTPUT FORMAT
gxseg(1) outputs metadata as single-line messages of the following types/formats:

SOURCE
is the first message going to STDOUT, specifying to the consumer (any app down the pipeline) the stream
that this instance would be segmenting. The format is as below:

SstreamID init [˜]channel-tag data_dir=root-dir [max_sec=sec] [item_pfx=prefix]

where
streamID: either channel-tag (-N) or the process’s pid (see -u);
init: message type;
˜(tilde): added if this instance started as a backup (before roll-over);
channel-tag: specified by -N;
root-dir:= as specified by -S;
sec:= as specified by -a;
item-fpx:= as specified by -3.

Example: Sprime1 init prime1 data_dir=data

SEGMENT
is the message providing segment metadata. The format is as below:

SEGMENT: path timestamp duration size num-id PTS

where
path: relative path to the file;
timestamp: UNIX time for the start of the segment;
duration: duration in seconds;
size: of the file;
num-id: numeric ID for the encryption job (currently unused);
PTS: PTS time for the start of the segment;

Example: SEGMENT: prime1/7918931084.ts 1498837025 4.800000 6566088 0 7918931084

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gpm(1),wux(1),vsm(1),ffmpeg(1)

Version 1.5 June 29, 2017 4

wux(1) wux (GigA+ UNIX socket pass-through) manual page wux(1)

NAME
wux - STDIN to UNIX socket copy utility.

SYNOPSIS
wux [-r] [-m nrec:rsize] unix-socket-path [manifest-path]

DESCRIPTION
wux reads data from STDIN and writes it into a designated UNIX (stream) socket. wux is expecting the
source to be in text format, it reads and writes one line at a time. Optionally, every processed line is added
to a (text-based) manifest file. The manifest holds text lines in records of a fixed size, with a pre-defined
cap on the record count. When the maximum number of records is reached, wux ’rotates’ the manifest con-
tents, deleting the oldest record.

wux is an integral part of GigA+ architecture. In GigA+ wux is used by vsm(1) to relay messages between
gxseg(1) and gpm(1) modules. GigA+ users are not supposed to run wux directly (as it is run by other
modules) but may want to know how it operates.

wux uses no configuration file, relying on command-line parameters.

PARAMETERS
wux accepts one mandatory parameter: the path to the destination UNIX socket. All data read from STDIN
is to be written to that socket.

Path to the manifest file. Unless the path is specified, no data is written to the manifest.

OPTIONS
The options may be given in any order, before or after filenames. Options without an argument can be
combined after a single dash.

-r expect response from the peer socket. Unless this option is specified, the application would not
read any (response) output from the destination socket.

-m mrec:rsize
specifies two comma-separated parameters: maximum number of records in the manifest and
manifest-record size (fixed). Both parameters must be specified if using the mainfest. The mini-
mum record size is 64.

ENVIRONMENT
INPATH variable can be set to the text file to replace STDIN.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigaplus(1),gpm(1),vsm(1),gxseg(1)

Version 1.0 May 28, 2017 1

vsm(1) vsm manual page vsm(1)

NAME
vsm is a video-stream feed manager for GigA+.

SYNOPSIS
vsm [-l logfile] specfile [gxseg-options]

DESCRIPTION
vsm facilitates preparation of the inbound stream for serving via HLS. This involves segmenting, feeding
meta-data, handling various notifications, errors and abnormal situations. vsm packs quite a bit of business
logic. The module is a script invoking a number of GigA+ (and some third-party) utilities (gxseg, wux,
hos, prbsm) to perform its duties. For configuration it uses a plain UNIX shell script, hereinfater referred to
as channel spec (or simply the spec), assigning values to reserved environment variables. Each vsm
instance is responsible for one (distinct) channel.

PARAMETERS
specfile is one mandatory parameter: path to the channel spec. NB: Use caution with what you put into the
spec, for it is, in fact, executed by vsm and may affect your system as any other shell script could. NEVER
run vsm (or spec) as root. Because you don’t need to.

logfile parameter is optional and specifies path to the log where all output would go; or to STDERR if
skipped.

gxseg-options parameter is optional. It allows to supply custom command-line options to gxseg module.
Reserved for advanced customization of vsm behavior. Do NOT use unless you absolutely MUST.

CHANNEL SPEC
Is what vsm uses for configuration. A verbosely-commented example is supplied with the distribution and
gets installed to

/usr/share/doc/gigaplus/examples/vsm-channel.spec

(FreeBSD users should consider /usr/local/share/.. instead). You may use this example as a template for
your own specs.

The following sections will present the variables set within the spec, essentially those are the configuration
parameters.

cha_ID
name/id for the channel. It will be used within directory paths so the recommendation is to keep it simple
and compliant with OS guidelines for directory names.

Example: cha_ID="cinemax"

cha_GPM
path to the UNIX socket connecting to the source-listener of GigA+ playlist manager (gxpm), which
receives notifications on generations of each data segment via UNIX-socket. vsm establishes a connection
to gxpm via gxseg and wux.

Example: cha_GPM="/tmp/gpm-S.sock"

cha_URL
URL (in ffmpeg-compliant format) for the stream source.

Version 1.5 June 21, 2017 1

vsm(1) vsm manual page vsm(1)

Example: cha_URL="udp://224.0.2.26:5050"

cha_ROOT
top-level root directory. This path should NOT include the name/ID of the channel, since cha_ID is to be
used for that automatically by vsm. For instance, if the cha_ROOT="/opt/data" would make the channel’s
directory /opt/data/${cha_ID}.

Example: cha_ROOT="/opt/data"

cha_PFX
custom URL prefix to be used by gxpm for this channel’s playlist URLs. A channel can specify its "own"
prefix or rely on the common one in the gxpm’s configuration.

Example: cha_PFX="http://myown.tv:8181/seg/"

cha_SHARDS
lists colon-separated partitions/shards used to store segment data in. This parameter is optional, no parti-
tioning will be applied if skipped. If specified, data would be evenly spread across shards. For instance,
with cha_ROOT=/opt/data and cha_ID=tv5 and cha_SHARDS="vol1:vol2" segments would be put into
/opt/data/vol1/tv5 and /opt/data/vol2/tv5 in a round-robin fashion.

Example: cha_SHARDS="vol1:vol2:vol3"

cha_CAPACITY
defines how many seconds worth of channel data to store. This is the core setting for DVR, defining the size
of the "time window" to afford. vsm passes this setting on to gxpm which will remove the "expired" seg-
ments in real time. At the start though, if cha_HOS (see below) specified, vsm will invoke hos utility and
let it purge all "expired" segments.

Example: cha_CAPACITY=14400

cha_DURATION
is channel-specific duration of a single segment in seconds. This parameter is optional, the default value is
5.

Example: cha_DURATION=6

cha_GRAN_MASK
specifies time-specific mask for a subdirectory within the channel’s data storage. The format of the mask is
per strftime(3) specification. If specified, each data segment is put into a subdirectory that is created based
on the said mask. For instance, with cha_GRAN_MASK="%Y%m%d-%H", a segment generated on July
6th, 2017 at 3:56 pm will be placed into a subdirectory named 20170706-15. If cha_ROOT=/opt/data, with
cha_ID=tv5, the full path would become: /opt/data/tv5/20170706-15 (no shards) and
/opt/data/vol1/tv5/20170706-15 for the first shard if cha_SHARDS="vol1:vol2".

Example: cha_GRAN_MASK=’%Y%m%d-%H’

cha_HOS
specifies path to the clean-up utility that vsm runs when started. GigA+ supplies its own hos script for the
purpose, yet it’s up to you to replace it with a custom app. The supplied hos is responsible for keeping a
channel’s storage from swelling over the reasonable size, removing "expired" segments, rotating and ar-
chiving logs, etc. If cha_HOS is omitted, no such cleaning is done.

Please see vsm-scripts(1) documentation for details.

Version 1.5 June 21, 2017 2

vsm(1) vsm manual page vsm(1)

Example: cha_HOS="hos"

cha_MITEMS
specifies the number of items to keep in the mainfest that wux will maintain for the channel. A channel
manifest is just a list of segments recently added. gxpm is aware of manifests and tries to load one up when
a channel joins in. This is done to "catch up" with the channel that had some down time or crashed and
stayed offline for a while. Manifest is also the way for gxpm to become aware of channel segments that
were generated while gxpm itself was down (for some reason). The parameter sets the number of items
allowed in the manifest, which is rotated (by wux) on the FIFO basis. If cha_MITEMS is omitted, there
will be no manifest for the channel.

Example: cha_MITEMS=2800

cha_MAX_CERR
specifies the number of (critical) stream errors to tolerate. Some streams exhibit anomalies, causing libav
I/O routines to bail out (with EOD indication or else). This parameter allows to re-start the I/O loop N
times before exiting the app. vsm sets this parameter to 5 (five) by default. The value of -1 means ignore
all I/O errors.

NB: Ignoring I/O errors (with libav specifically) comes with a price: memory leaks. The more errors
ignored, the more memory wasted. Use your judgement to set this parameter to an optimal value for your
channel(s).

Example: cha_MAX_CERR=5

cha_ERR_BADTIME
specifies the maxumum number of PTS/DTS-specific errors tolerated by gxseg(1) while processing a
stream. The essense or the error is that libav API receives invalid PTS/DTS (presentation/display time-
stamps within an MPEG-TS packet). In the gxseg log it is manifested as:

pkt: rc=-28 stream0 buf=0x0/0 pts/dts=-9223372036854775808/-9223372036854775808

cha_LMARK_DISKSIZE
specifies channel size in MB (total size of all segment and meta-data files) at full capacity (after
cha_CAPACITY seconds passed). Note: hos won’t archive segments until this size is reached.

cha_HMARK_DISKSIZE
specifies maximum allowable size (in MB) for a channel. hos will try to stop vsm if this size is exceeded.

cha_ROLLO VER
sets the number of seconds between two consecutive roll-overs. One instance of vsm exits and the control
"rolls over" to another one (recently started) for this particular channel. This is done to abate the inner defi-
ciency of ffmpeg’s libav libraries that (historically, for some reason) just cannot read a stream w/o interrup-
tion 24/7 and begin to "choke" after a while. Thus, the "old" vsm exits (retires) and the new instance takes
over the job. The parameter regulates how often that process repeats. If omitted, no roll-overs get per-
formed on the channel.

An alternate way to do roll-overs is by (supplied) force-rollover.sh script that should end up in
/usr/share/gigaplus/scripts (for Linux, /usr/local/share/... under FreeBSD). Schedule script runs via
crontab(1) to get roll-overs happen when you wish and as often as needed.

Example: cha_ROLLOVER=7200

Version 1.5 June 21, 2017 3

vsm(1) vsm manual page vsm(1)

cha_FALSE_ROOT
specifies full path to the directory, where the "new" instance of vsm would store its data before the
"roll-over". There’s a certain time period between the launch of the new instance and the moment that new
instance can take over the job of the "old" process. During that period, both vsm instances run, but only the
"old" one supplies data segments (to gxpm). Until the "old" one is done, the new one has to store its seg-
ments somewhere too. The last segment within that period that the "new" instance generates in then sym-
linked to the regular channel-storage directory (implying that the cha_FALSE_ROOT directory cannot be
quite simply purged after a "roll-over").

Example: cha_FALSE_ROOT=/opt/bvt-hls/fake

cha_PRB
specifies path to a stream probe utility that allows to tell whether there’s any data flow from the source. vsm
needs it to know when a channel goes offline, the transmission simply stops. It is important to tell the "off-
line" scenario from another issue with the channel that might cause vsm to exit returning an error code.
GigA+ supplies prbsm of its own making but one is always welcome to replace it with a custom app/script.
If cha_PRB is omitted, vsm exits when it "thinks" the channel has gone offline.

Example: cha_PRB=prbsm

cha_ADMIN_EMAIL
specifies administrator’s email where vsm would send notifications of importance, such as: start, exit, going
online and offline. If omitted, no notifications are sent.

Example: cha_ADMIN_EMAIL=’admin@myown.tv’

cha_TRANSOPT
specifies options passed to ffmpeg(1) for trans-coding the source channel before it gets segmented. This is
a simplistic approach to trans-coding content and should be used for simple cases, such as making sure
audio streams within the channel are of the right codec(s). If the parameter is set, vsm runs ffmpeg on the
source and pipes the output to gxseg. Use at your own risk/discretion and do test the options with ffmpeg
before you put them into the spec.

Example: cha_TRANSOPT="-map 0:0 -map 0:1 -map 0:2 -map 0:3 -vcodec copy -c:a mp3 -c:s copy"

AUTHORS
Pavel V. Cherenkov

SEE ALSO
wux(1),gxpm(1),vsm-scripts(5),ffmpeg(1),crontab(1),gxseg(1)

Version 1.5 June 21, 2017 4

vsm-scripts(5) vsm-scripts manual page vsm-scripts(5)

SYNOPSIS
This page documents auxillary scripts for segmenting a video stream via vsm(1) - GigA+ video-stream
manager. The scripts are: hos, prbsm and force-rollover.sh.

DESCRIPTION
vsm(1) encompasses a lot of business logic on its own, yet certain functionality is externalized and put into
separate scripts. One of the reasons for that is that users could customize the abstracted components and use
a different language for implementation. The components are:

hos
is the channel housekeeping utility, launched by vsm at the start of its work. The utility assures that the
channel’s data storage keeps only the necessary data that is no older than the archival period given in the
channel spec (see cha_CAPACITY in vsm(1) documentation).

hos is abstracted from vsm so that it could be invoked either manually or by a cron(8) job.

SYNOPSIS
hos OPTIONS channel-tag

hos takes just one mandatory parameter:

channel-tag
is the nametag used for the channel to attend to (as in cable1). hos will retrieve the channel’s
spec and read parameters from it.

OPTIONS
--common

do not work on channel data, only deal with common logs (i.e. gxpm.log, gxws.log, dwg.log, etc.)
- for channel-agnostic modules.

--term do NOT generate log, send output to terminal only. By default, hos will create a log in the chan-
nel’s root directory and mirror all messages it sends to STDERR to it. This option disables log-
ging.

-n simulation mode (like make -n), print commands but do nothing.

-L force vsm to rotate the log. Signals the channel-bound vsm(1) to rotate its log.

--sysrep
include system report at the beginning of each log. The report consists of a printout from
vmstat(8) and a process table dump via ps(1) utility. This fattens up the log but may be quite use-
ful to have if a server goes down (from being resource-strapped or else). Use at your discretion.

--minfr ee MB
alert if free (physical) RAM goes below this limit. This setting allows to set a threshold for the
minimum of RAM available. It measures the OS-unmanaged free memory, so the system may
actually run fine even with 0 value. Use at your discretion.

Example: hos --term --sysrep -L cable1

prbsm
checks whether the channels is sending data, i.e. is ONLINE or OFFLINE. vsm(1) needs the utility to
check on a channel that crashed or stalled. If the channel went OFFLINE, vsm notifies the admin and waits
for the channel to go back ONLINE.

Version 0.1 September 19, 2017 1

vsm-scripts(5) vsm-scripts manual page vsm-scripts(5)

SYNOPSIS
prbsm [-v] [-p sec] input-url [once|stabilize]

prbsm has one mandatory parameter:

input-url
is the ffmpeg(1) -compliant URL for the source stream.

OPTIONS
-v verbose output.

-p sec pause (in seconds) to take between checks.

once|stabilize
check once if specified, or wait for the channel to go ONLINE (check as long as it takes).

Example: prbsm -p 5 http://acme.tv:4040/udp/224.0.2.26:5050 stabilize

force-rollover.sh
signals vsm to initiate a roll-over process. The script was created so that a roll-over could be scheduled via
crontab(1)

SYNOPSIS
force-rollover.sh channel-root-dir signals to roll over a channel at the given directory.

Example: force-rollover.sh /opt/channels/cnn

AUTHORS
Pavel V. Cherenkov

SEE ALSO
vsm(1),gpm(1),crontab(1),ffmpeg(1)

Version 0.1 September 19, 2017 2

