
gxa-setup(5) GigA+ setup manual page gxa-setup(5)

NAME
gxa-setup is a HOWTO manual to set up GigA+ on a single (non-balanced) server.

SYNOPSIS
This document provides an example of the steps needed to install and configure GigA+ on a single server,
without data replication or load balancing involved.

INSTALLA TION and REMOVAL
GigA+ is installed on Linux from either a .deb package or an .rpm, depending on the target distribution. On
FreeBSD, the installation is done from a compressed tar archive.

Installing (r emoving) from RPM
The initial file for an RPM installation is a tarball archive that one uploads to the destination server. Once
copied, the contents of the archive must be extracted: there’ll be an RPM and a shell script inside. The
script is invoked (with admin privileges) given the name of the rpm as a parameter.

Here’s an exapmle of how it’s done:

tar -xvf gigaplus-0.1-2.2.x86_64.tar
gigaplus-0.1-2.2.x86_64.rpm
install-gigaplus-rpm.sh

sudo ./install-gigaplus-rpm.sh gigaplus-0.1-2.2.x86_64.rpm

The installation script will install the necessary repositories and packages, invoking yum(8) in the process.
To uninstall, one must invoke yum(8) manually, as in

sudo yum remove gigaplus

Installing (r emoving) from DEB
For a Debian-compliant install the GigA+ tarball archive contains a .deb package and install-deb.sh script.
To install, one simply runs the script with the path to the .deb as a parameter. The underlying call to
apt-get(8) takes care of the dependencies. Uinistall would be performed with apt-get as well. Here are the
relevant examples:

sudo ./install-deb.sh gigaplus.deb
˜/tmp$ sudo ./install-deb.sh gigaplus.deb
Selecting previously unselected package gigaplus.
(Reading database ... 88467 files and directories currently installed.)
Preparing to unpack gigaplus.deb ...
Unpacking gigaplus (1.5-7.4) ...
Setting up gigaplus (1.5-7.4) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...
Reading package lists... Done
Building dependency tree
Reading state information... Done
0 upgraded, 0 newly installed, 0 to remove and 9 not upgraded.

To uninstall:

˜/tmp$ sudo apt-get remove gigaplus

Version 0.1 August 1, 2017 1

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
gigaplus

0 upgraded, 0 newly installed, 1 to remove and 9 not upgraded.
After this operation, 6636 MB disk space will be freed.
Removing gigaplus (1.5-7.4) ...
Processing triggers for man-db (2.6.7.1-1ubuntu1) ...

NB: GigA+ dependencies will not be uninstalled automatically. Please use apt-get autoremove to purge
them.

Installing (r emoving) on FreeBSD
A tarball archive is provided for installation on FreeBSD. Extract it into a separate directory and follow the
instructions in the INSTALL.txt file. Here’s an example:

$ ls
INSTALL.txt Makefile install-bsd-deps.sh opt tarball-setup.sh usr
$ cat INSTALL.txt
@(#) installation instructions for Gigaplus (tarball)
#

To install Gigaplus, just run at the prompt:

make install - to install into the default location (root-based);
OR

PREFIX=/your/cursom/root make install - to install to a custom root location.

To uninstall, do the same but with the ’uninstall’ make target:

make uninstall - to uninstall from the default location;
OR

PREFIX=/your/cursom/root make uninstall

NB: uninstall will attempt to delete all previosly installed files,

but not the directories or any files that you’ve created there.

__EOF__

$
$ sudo make install
Installing GigA+
All dependencies already installed
Done.
$ type gxws
gxws is /usr/local/bin/gxws

Uinistalling is as simple:

$ sudo make uninstall
Uninstalling GigA+

Version 0.1 August 1, 2017 2

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

Done.

IMPORTANT: the installation script under FreeBSD uses pkg(8) system to install dependencies. If ports
are to be used instead, please modify the install-bsd-deps.sh (part of the archive) accordingly.

NB: GigA+ dependencies will not be uninstalled automatically.

LICENSE
A license is required to run GigA+ modules. If we just run a module now, we would see that a valid license
is missing.

$ gxws -V
gxws (Web service) 0.1-1.5 (fea395-bsd) regular [FreeBSD 11.0 FreeBSD (amd64) - 11.0-RELEASE-p1/amd64] (udefined) 6f1662e2/0; built on 2017-07-19
==
= ERROR: License not found, please contact support@gigapxy.com ==
==
License validation failed

Generate the server key
For a license to be generated, a server key is required. Almost every module of GigA+ can generate one
using the -K option.

$ sudo -u gigaplus gxws -K
System key: [1dbd23e4d70f2ff6662ff30816958087c9800a2d8354a532] (0x188a)

NB: Undef Linux you can generate key without sudo(8) ; however, on FreeBSD you need to used sudo -u
gigaplus or add your current user to the kmem group.

Get and validate the license
Include the server key(s) in the license-request email to support@gigapxy.com. Get a license tarball con-
taining gxa.lic file - this is your license. Save the license in a safe place and make sure you have a backup
copy.

Validating a license is simple: copy gxa.lic to a temporary folder and run gxws -V:

$ uname -svr
FreeBSD 11.0-RELEASE-p1 FreeBSD 11.0-RELEASE-p1 #0 r306420: Thu Sep 29 01:43:23 UTC 2016 root@releng2.nyi.freebsd.org:/usr/obj/usr/src/sys/GENERIC
$ gxws -V
gxws (Web service) 0.1-3.2 (gigaplus) regular [FreeBSD 11.0 FreeBSD (amd64) - 11.0-RELEASE-p1/amd64] (2017-12-31) 61671e1f/2253082; built on 2017-08-01

In the info string the license expiration date in the round brackets, past the build platform: (2017-12-31).
We’re good to go until the year’s end. Now that we know this license works, we can copy (or link) gxa.lic
to /etc (Linux) or /usr/local/etc (FreeBSD). With the license copied, it can be seen from anywhere on the
host.

cp gxa.lic /opt/gxa/etc
sudo ln -s /opt/gxa/etc/gxa.lic /usr/local/etc/gxa.lic
pushd /tmp
$ gxws -V
gxws (Web service) 0.1-3.4 (fea454-setup) regular [FreeBSD 11.0 FreeBSD (amd64) - 11.0-RELEASE-p1/amd64] (2017-12-31) c11d899c/2253082; built on 2017-08-02

Version 0.1 August 1, 2017 3

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

PRE-CONFIGURATION TASKS
There are a few things that should be done before we get to setting up configuration and running GigA+
modules.

Read the documentation
Not all of it, of course. But don’t go any further untill you’ve read gigaplus(1) man page and understood
what kind of a setup you need. Do you need HLS? Single- or multi-server setup? Will you use gxng(1) as
the file server or would you rely on NginX to do the job? It makes sense to get acquainted with the names
of GigA+ modules, for they will keep getting used throughout this manual without any additional hints on
their purpose.

Check your source streams
The streams that would become your channels need to be accessible on this server, period. So, please check
that you can read them. For multicast streams, you can use tools like multicat(1) from VideoLAN or ncl(1)
supplied with GigA+, or any other tool. If you are going to deliver a stream via HLS, make sure that it is
HLS-compliant in codecs and can be analyzed with ffprobe(1) utility.

NB: ffpr obe(1) and ffmpeg(1) are NOT installed by default, so you might need to install them (as part of
ffmpeg suite) manually.

Decide on your data storage
If you intend to use DVR in your HLS delivery (non-HLS DVR is not available), you might need quite a bit
of storage space for video segments. That storage could be all in one logical volume or spread across differ-
ent (sharded) disks. You need to know all the partitions to be involved. If needed, replace one of the
/opt/gxa (GigA+ data root) directories with a soft link, as in:

$ ls -ld /opt/gxa/channel
lrwxrwxrwx. 1 gigaplus gigaplus 16 ÐÑÐ» 20 19:27 /opt/gxa/channel -> /mnt/hd1/channel

Adjust ownership on GigA+ data directories
Make sure that ownership/permissions on /opt/gxa (data root for GigA+) and its subdirectories match your
expectations. Initially they are owned by gigaplus:wheel.

$ ls -ld /opt/gxa
drwxrwxr-x 8 gigaplus wheel 512 Aug 2 11:53 /opt/gxa/

Enable core dumps
Core dumps are essential (to analyze crashes of binary components). Please ensure core dumps are
enabled, get generated and go to the directory of your choice in the format of your choosing. Having
process id in the core-dump name is a lot of help to whoever works on it later. The following script enables
core dumps on Linux:

cat corep.sh
@(#) Makes sure cores are dumped in a proper format.

core_dir=/opt/gxa/core
[-d "${core_dir:?}"] || mkdir -m 777 ${core_dir}

echo ’1’ > /proc/sys/fs/suid_dumpable
echo ’/opt/gxa/core/%e.%p.core’ > /proc/sys/kernel/core_pattern

Version 0.1 August 1, 2017 4

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

__EOF__

Ensure emails can be sent
Email notifications are sent by at least one GigA+ script, so SMTP should be working on your server. vsm
uses mailx(1) to send email notifications.

SETTING UP CONFIGURATION
There are two default config files supplied with GigA+ package: gigaplus-default.env and gigaplus-
default.conf. Both should be made copies of, edited and moved to /etc (/usr/local/etc) as gigaplus.env and
gigaplus.conf. The default config files are initially at /opt/gxa/etc.

cp /opt/gxa/etc/gigaplus-default.env gigaplus.env
cp /opt/gxa/etc/gigaplus-default.conf gigaplus.conf

The .env config is a small one, but gigaplus.conf contains sections for all the GigA+ modules, so we’ll be
editing it in phases, step by step. In order to understand a section of gigaplus.conf, one must read the rele-
vant page(s) of the documentation.

gigaplus.env
This configuration is a shell script used by GigA+ to set global environment variables.

$ cat gigaplus.env
@(#) GigA+ settings for shell scripts
#
This file is included by GigA+ shell scripts
to initialize the runtime environment.

NB: It is YOUR responsibility to set the correct values and
uncomment the necessary parameters.

Root directory for GigA+ data (MANDATORY).
GXA_ROOT=/opt/gxa

Root directory for channel data (MANDATORY).
GXA_CHANNEL_ROOT=/opt/gxa/channel

Directory for channel specs.
GXA_SPEC_DIR=/opt/gxa/etc/spec

Directory for log archives.
Channel-specific logs would reside within channel-named subdirectories,
others under "gxa-common" subdirectory.
#
Re-define when logs are to be stored on a different volume/partition.
#
GXA_LOG_ARCHIVE=/opt/gxa/log/archive

__EOF__

Unless you plan to use a data root different from /opt/gxa, not much

Version 0.1 August 1, 2017 5

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

gigaplus.conf: GXWS and GXNG
For this step you must first study gxws(1) and gxng(1) pages. Without reading them in full, not much could
be made sense of here.

In the ws the first thing you might want to look at are network interface names for the user/admin listeners
(set by default to all so that you can try the module without any modifications).

HLS is enabled by default (ws.hls.enabled = true), set it to false if you don’t need HLS.

Turn off built-in TPUT stats if you won’t be using reports: stats consume CPU and (under much stress)
have been known to cause some instability. ws.tput_stats.enabled = false.

In this scenario, we’ll be using HLS and linear streaming but (in in this example) will not use the TPUT
stats (ws.tput_stats.enabled = false). The changes are as below:

$ diff gigaplus.conf /opt/gxa/etc/gigaplus-default.conf
32,33c32,33
< admin = { ifc = "lo0"; port = "4047"; default_af = "inet"; };
< user = { ifc = "em0"; port = "4046"; default_af = "inet"; };

> admin = { ifc = "all"; port = "4047"; default_af = "inet"; };
> user = { ifc = "all"; port = "4046"; default_af = "inet"; };
68c68
< enabled = false;

> enabled = true;

$ sudo gxws -C ./gigaplus.conf
2017-08-02 13:07:07.135342 MSK (INF) GWS Config file=[./gigaplus.conf]
$
$ sudo ps aux | grep gxws
gigaplus 3773 0.0 0.8 14140 4152 - S 13:07 0:00.00 gxws -C ./gigaplus.conf (gxa)

$ tail -f /opt/gxa/log/gxws.log
===
2017-08-02 13:07:07.139158 MSK 3773 (NRM) GWS gxws (Web service) 0.1-3.4 (fea454-setup) regular [FreeBSD 11.0 FreeBSD (amd64) - 11.0-RELEASE-p1/amd64] (2017-12-31) c11d899c/2253082; built on 2017-08-02 STARTING. PID=3773
2017-08-02 13:07:07.139171 MSK 3773 (INF) GWS Config read from [./gigaplus.conf]
2017-08-02 13:07:07.139199 MSK 3773 (INF) GWS Runtime pid=3773 uid/gid = 1002/1002 running in [/usr/home/bsl45/tmp]
2017-08-02 13:07:07.139362 MSK 3773 (INF) GWS STARTED listener fd4 for ADMIN requests on lo0:4047; 0 requests pending
2017-08-02 13:07:07.139447 MSK 3773 (INF) GWS STARTED listener fd5 for MODULE requests on /opt/gxa/run/comm.socket:; 0 requests pending
2017-08-02 13:07:07.139469 MSK 3773 (CRI) GWS GWS [pid=3773] is running.
2017-08-02 13:07:07.139730 MSK 3773 (INF) GWS Entering event loop

It’s fair to note that gxws is not (yet) listening for user requests because it’s waiting for the first gxng to
attach. In the scenario where we don’t need a gxng to process requests (only gxws and NginX), we could
mark a listener as no_gng = true.

{ alias="int1"; ifc = "all"; port = "5146"; default_af = "inet"; is_safe = true; no_gng = true; }

That would cause gxws to start listening on int1 right away.

The ng. section of the config is rather complex by itself (please do not neglect to read gxng(1) manpage
thoroughly), but for the immediate purpose (initial setup, not tuning), we change only one thing:

Version 0.1 August 1, 2017 6

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

ws.tput_stats.enabled = false.

NB: if we were to go for an HLS-only setup, we could completely disable buffers (ng.bufd.enabled =
false) and save on memory consumption. Since we’d be using linear streams too, we need the buffers, so
bufd stays enabled.

We start gxng manually to make sure the configuration works:
$ sudo gxng -C ./gigaplus.conf
$ ps aux | egrep "gxng|gxws"
gigaplus 6099 0.0 0.8 14140 4152 - I 16:24 0:00.00 gxws -C ./gigaplus.conf (gxa)
gigaplus 6111 0.0 0.9 1128440 4380 - I 16:25 0:00.00 gxng -C ./gigaplus.conf (gxa)

$ tail -f /opt/gxa/log/gxng.log
2017-08-02 16:25:25.033550 MSK 6111 (INF) GNG new_bufd_rec: 0x8014422c0 path=[]: BR15 - fd-1/m(0x83d600000)
2017-08-02 16:25:25.033562 MSK 6111 (INF) GNG new_bufd_rec: 0x801442400 path=[]: BR16 - fd-1/m(0x841600000)
2017-08-02 16:25:25.033850 MSK 6111 (INF) GNG open_domain_client: fd=2 connected to [/opt/gxa/run/comm.socket]
2017-08-02 16:25:25.034177 MSK 6111 (CRI) GNG CONNECTED to WS [/opt/gxa/run/comm.socket], fd=2
2017-08-02 16:25:25.034426 MSK 6111 (CRI) GNG GNG [pid=6111] is running.
2017-08-02 16:25:25.034575 MSK 6111 (INF) GNG Entering event loop

$ sudo kill 6099 6111

Now that we know that the initial configuration works, we copy/link it as permanent and start gxws and
gxng from the script:

$ cp gigaplus.env gigaplus.conf /opt/gxa/etc/
$ sudo ln -s /opt/gxa/etc/gigaplus.conf /usr/local/etc/gigaplus.conf
$ sudo ln -s /opt/gxa/etc/gigaplus.env /usr/local/etc/gigaplus.env

$ ln -s /usr/local/share/gigaplus/scripts/gxa-requests.sh
$./gxa-requests.sh
Usage: ./gxa-requests.sh [--nopm|--killpm] start|stop|status [num]
Where:

gxpm will NOT launch if --nopm specified at start;
will NOT stop gxpm unless --killpm specified at stop;
num = number of (gng) engines to launch [1..64]

Set GXA_DEBUG=1 to see what commands are run.

$
$ sudo ./gxa-requests.sh --nopm --nopin start 2
[GXWS] is not running.
Starting GXWS ...
Starting GXNG1 ...
Starting GXNG2 ...
Pausing for 1 second(s).
GXWS [6651] STARTED
GXNG [6664] STARTED
GXNG [6678] STARTED
[GXPM] is not running.
$
$ sudo ps aux | egrep ’gxws|gxng’ | grep -v egrep
gigaplus 6651 0.0 0.8 14140 4152 - S 17:19 0:00.00 /usr/local/bin/gxws -q -l /opt/gxa/log/gxws.log -p /opt/gxa/run/gxws.pid (gxa)
gigaplus 6664 0.0 0.9 1128440 4380 - S 17:19 0:00.00 /usr/local/bin/gxng -q -l /opt/gxa/log/gxng1.log -p /opt/gxa/run/gxng1.pid (gxa)

Version 0.1 August 1, 2017 7

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

gigaplus 6678 0.0 0.9 1128440 4380 - S 17:19 0:00.00 /usr/local/bin/gxng -q -l /opt/gxa/log/gxng2.log -p /opt/gxa/run/gxng2.pid (gxa)
$
$ sudo ./gxa-requests.sh stop
GXWS [6651] is running
GXWS [6651] stopped.
$

We’ve used --nopm not to start gxpm, because we have not configured it yet, and --nopin not to assign
CPU affinity to gxngs, becasue the test box has just one core.

This configuration is enough for one to start testing linear streaming. Start gxws and gxngs as above and
use vlc, wget or any other tool with an available multicast group (or a unicast HTTP URL) to see the data
flowing. See gigaplus(1) for examples of linear-streaming requests. Example of a linear-stream request:

$ wget -O /dev/null ’http://192.168.1.112:4046/udp/239.1.2.30:3333’

gigaplus.conf: GXPM using GXNG
This part requires one to read gxpm(1) page first. Here we edit the gpm section of gigapxy.conf and
test-launch gxpm.

gxng(1) will be the HTTP server delivering HLS data segments, so we change the gpm.item_url_prefix.
The prefix will now direct traffic back to gxws(1) user listener and the hls-fra URL segment specify to
gxws that this query is for a data segment via gxng.

$ diff /opt/gxa/etc/gigaplus.conf /opt/gxa/etc/gigaplus-default.conf
206c211
< item_url_prefix = "http://192.168.1.112:4046/hls-fra/";

> item_url_prefix = "http://acme.tv:4046/hls-fra/";

$ sudo ./gxa-requests.sh --nopin start 2
[GXWS] is not running.
[GXPM] is not running.
Starting GXPM ...
Starting GXWS ...
Starting GXNG1 ...
Starting GXNG2 ...
Pausing for 1 second(s).
GXWS [6768] STARTED
GXNG [6781] STARTED
GXNG [6794] STARTED
GXPM [6760] STARTED
GXNG [6794] is running

SETTING UP HLS CHANNELS
This chapter requires that you study and understand the vsm(1) , vsm-scripts(1) and gxseg(1) pages, on top
of all the prior reading requirements. You may also consider reading wux(1) page (not a must).

Launching a simple multicast-based channel (that requires no trans-coding) would be the first step. The
chapter concludes with setting up and testing three channels, this would cover both DVR and immediate
trans-coding.

Version 0.1 August 1, 2017 8

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

A simple channel
An example of a vsm(1) channel spec is provided in /usr/local/share/doc/gigaplus/examples/ (FreeBSD,
skip ’local’ under Linux). We copy and edit it to suit out needs. Our channel is going to be multi-
cast-based, without much data saved, since it would be serving only LIVE HLS requests.

$ cp /usr/local/share/doc/gigaplus/examples/vsm-channel.spec spec/cable1.spec
$ vim spec/cable1.spec
$ diff spec/cable1.spec /usr/local/share/doc/gigaplus/examples/vsm-channel.spec
6c6
< cha_ID="cable1"

> cha_ID="sample1-hd"
12c12
< cha_URL="udp://239.1.2.30:33333"

> cha_URL="http://acme.tv:4046/udp/239.1.2.30:33333"
18c18
< # cha_PFX="http://localhost:8181/seg/"

> cha_PFX="http://localhost:8181/seg/"
23c23
< # cha_SHARDS="vol1:vol2:vol3"

> cha_SHARDS="vol1:vol2:vol3"
35c35
< # cha_DURATION=6

> cha_DURATION=6
41c41
< # cha_ROLLOVER=3600

> cha_ROLLOVER=3600

No shards are needed (since we don’t keep much data). For temporary segments we assume that the default
choice (/tmp) is fine. Automatic roll-overs were disabled: we will schedule roll-overs via cron(8) using
force-rollover.sh script. Segment duration is 6 seconds. Channel-specific prefix is not needed since we
have the global gpm.item_url_prefix set up in gigaplus.conf.

If you already know how much of data each channel would be expected to hold, you should set
cha_LMARK_DISKSIZE and cha_HMARK_DISKSIZE parameters. The second of those is the high thresh-
old that your channel should never over-reach in size. The first one is the minimal amount of data that the
channel should accumulate before hos(1) considers removing stale data segments.

Before we go further, let’s check if the channel’s codecs are HLS-compliant. Video: H.264 format and
audio in AAC, MP3, AC-3 or EC-3. From ffprobe(1) we get HLS-compliant A/V specs:

Stream #0:0[0x100]: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(progressive), 1280x640 [SAR 1:1 DAR 2:1], 23.98 fps, 23.98 tbr, 90k tbn, 47.95 tbc
Stream #0:1[0x101](eng): Audio: ac3 ([129][0][0][0] / 0x0081), 48000 Hz, 5.1(side), fltp, 448 kb/s

A directory must be created for the channel. There vsm will store data segments as well as channel
meta-data, such as manifests, pidfiles, channel-specific logs, etc.

$ sudo -u gigaplus mkdir -m 775 -p /opt/gxa/channel/cable1
$ ls -ld /opt/gxa/channel/cable1

Version 0.1 August 1, 2017 9

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

drwxrwxr-x 2 gigaplus wheel 512 Aug 2 22:46 /opt/gxa/channel/cable1/
$
$ vsm
vsm (GigA+ Video stream manager) 0.1.3-8
Usage: /usr/local/bin/vsm [-l logfile] specfile [gxseg-options]
$

First we start vsm(1) without the log to see if the spec works.

$ sudo -u gigaplus vsm spec/cable1.spec
2017-08-04 MSK 11:30:47 vsm 17801 START vsm 0.1.3-15-.: /usr/local/bin/vsm specs/cable1.spec
2017-08-04 MSK 11:30:47 vsm 17801 Re-loading spec=specs/cable1.spec
2017-08-04 MSK 11:30:47 vsm 17801 Set /opt/gxa/channel/cable1/vsm.pid with vsm(17801)
2017-08-04 MSK 11:30:57 vsm 17801 Launched cable1/udp://239.1.2.30:3333
2017-08-04 MSK 11:30:57 vsm 17801 Waiting for gxseg(17868)
1501835465: >> SEGMENT: cable1/20170804-11/64728487.ts 1501835457 8.300000 3957964 0 64728487
1501835470: >> SEGMENT: cable1/20170804-11/65475487.ts 1501835465 5.214000 2478780 0 65475487
1501835477: >> SEGMENT: cable1/20170804-11/65944747.ts 1501835470 6.798000 3314252 0 65944747
1501835483: >> SEGMENT: cable1/20170804-11/66556567.ts 1501835477 5.505000 2890876 0 66556567

The bottom lines (after Waiting for gxseg(17868)) are the STDOUT from the channel-bound gxseg. They
lines contain meta-data sent to gxpm(1) via wux(1) utility. For the immediate purpose they indicate that
the stream is being segmented - the spec is operational.

Next, we want to be able to manage (start|stop|status) this channel via the control script: gxa-channels.sh.
For that, we first need to copy out spec to /opt/gxa/etc/spec, where it would be seen by the script. Then we
can check for the channel’s status/uptime, start and stop it.

$ cp specs/cable1.spec /opt/gxa/etc/spec/
$ ln -s /usr/local/share/gigaplus/scripts/gxa-channels.sh
$./gxa-channels.sh
Usage: ./gxa-channels.sh [--nopm] [--pause N] start|stop|status|shutdown [{channel}|all]

Options:
--nopm = do NOT attempt to start/stop gxpm.
--pause = wait N [5] seconds before checking on channels after start.

Note:
shutdown mode needs no parameters, it will stop all channels and gxpm.

GigA+ channel launch script (feel free to modify).
This script is part of GigA+. Copyright 2017 by Pavel Cherenkov
$
$./gxa-channels.sh --nopm status
gxpm [17158] is running

Channels:
cable1: (ON) uptime: 00d 00h:06m:23s
$
$ sudo ./gxa-channels.sh --nopm stop
gxpm [17158] is running

Channels:

Version 0.1 August 1, 2017 10

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

cable1: (ON) uptime: 00d 00h:06m:53s

Stopping all
cable1 stopped (pid=17958)
One second...
gxpm [17158] is running

Channels:
cable1: (OFF) - stale pidfile (17958) removed
$

Channel with incompliant audio
Moving on to a more complex case, another source. We will use ffprobe(1) (again) to check whether the
source stream is HLS-compliant.

Stream #0:0[0xcd]: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(tv, bt470bg, top first), 720x576 [SAR 12:11 DAR 15:11], 25 fps, 50 tbr, 90k tbn, 50 tbc
Stream #0:1[0x131](rus): Audio: mp2 ([4][0][0][0] / 0x0004), 48000 Hz, stereo, s16p, 192 kb/s

As we see, audio is mp2 - incompliant. NOTE: it does not mean that all players would not play the stream
back, but some definiely will reject it. Before you decide to transcode, check if you may NOT require
trans-coding for your particular players. If you do opt to transcode, read on.

Unlike video, audio is (relatively) easy to trans-code on the fly, and that’s what we’ll do by adding a
transcoding task to the spec. First we test though:

$ ffmpeg -re -i http://acme.tv:4404/champ2 -map 0:0 -map 0:1 -vcodec copy -c:a aac -map_metadata 0:p:0 -f mpegts transcoded.ts
$ ffprobe transcoded.ts

Stream #0:0[0x100]: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(tv, bt470bg, top first), 720x576 [SAR 12:11 DAR 15:11], 25 fps, 50 tbr, 90k tbn, 50 tbc
Stream #0:1[0x101](rus): Audio: aac (LC) ([15][0][0][0] / 0x000F), 48000 Hz, stereo, fltp, 133 kb/s

The ffmpeg options we supplied keeps video AS-IS and trans-codes audio to AAC. Our transcoding task
will look as below:

Transcode to AAC audio.
cha_TRANSOPT="-map 0:0 -map 0:1 -vcodec copy -c:a aac"

As we test-run the channel, we verify that our audio is now AAC:
ffmpeg -loglevel quiet -i http://acme.tv:4404/champ2 -map 0:0 -map 0:1 -vcodec copy -c:a aac -map_metadata 0:p:0 -f mpegts - | gxseg -N champ2 --source pipe:

$ ffprobe /opt/gxa/channel/champ2/20170804-14/14910240.ts
Stream #0:0[0x100]: Video: h264 (High) ([27][0][0][0] / 0x001B), yuv420p(tv, bt470bg, top first), 720x576 [SAR 12:11 DAR 15:11], 25 fps, 50 tbr, 90k tbn, 50 tbc
Stream #0:1[0x101](rus): Audio: aac (LC) ([15][0][0][0] / 0x000F), 48000 Hz, stereo, fltp, 126 kb/s

NOTE: Sometimes a channel would start manually but not the first time from the gxa-channels.sh script.
The first clue would be the vsm.log found at the channel root (in this case - /opt/gxa/chan-
nel/champ2/vsm.log). From there, it may take one to a gxseg log, in the same directory. With plenty of
warnings there like below:

2017-08-04 14:21:41.051865 MSK 18826 app_run: WARNING: stream[1] no PTS/DTS provided, PTS/DTS=-9223372036854775808/-9223372036854775808

it would make sense just to re-try the launch:

Version 0.1 August 1, 2017 11

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

$ sudo ./gxa-channels.sh start champ2
gxpm [17158] is running
appending output to nohup.out
champ2 [18904] is running
Pausing for [5] seconds..
gxpm [17158] is running

Channels:
champ2: (ON) uptime: 00d 00h:00m:06s
$
$./gxa-channels.sh status
gxpm [17158] is running

Channels:
cable1: (OFF)
champ2: (ON) uptime: 00d 00h:09m:42s
$

Meanwhile, gxpm rotates the stale segments (beyond our 600-second window), as we see from the log:
2017-08-04 14:36:12.328090 MSK 17158 (INF) GPM apply_src_changes: retiring [champ2/20170804-14/732720.ts] (m1) 6.440000 sec, new-total=594.520003 sec
2017-08-04 14:36:12.328097 MSK 17158 (INF) GPM recycle_segfile: removing [/opt/gxa/channel/champ2/20170804-14/232320.ts]

DVR channel with disk shards
The next steps would be to set up a long-term DVR channel - news3. The channel will hold a lot of of data,
this means that we’d need more space for its segments than for the two previous channels. We will spread
the segments of the new channels across three large disks mounted to /opt/disk1, /opt/disk2 and /opt/disk3.
The structure of /opt/gxa/channel directory will looks as below:

$ ls -l
total 12
drwxrwxr-x 3 gigaplus wheel 512 Aug 4 17:23 cable1
drwxr-xr-x 3 gigaplus wheel 512 Aug 4 17:04 champ2
lrwxr-xr-x 1 gigaplus wheel 10 Aug 4 17:45 disk1 -> /opt/disk1
lrwxr-xr-x 1 gigaplus wheel 10 Aug 4 17:45 disk2 -> /opt/disk2
lrwxr-xr-x 1 gigaplus wheel 10 Aug 4 17:45 disk3 -> /opt/disk3
drwxr-xr-x 2 gigaplus wheel 512 Aug 4 17:46 news3
$ ls -l disk1/
total 4
drwxr-xr-x 2 gigaplus wheel 512 Aug 4 17:46 news3
$

The top-level news3 subdirectory will hold meta-data, the news3 subdirectories under disk1..disk3 will
hold data segments. The channel will hold 24 hours, i.e. 86400 seconds of data. The relevant changes in the
spec would be:

cha_SHARDS="disk1:disk2:disk3"
cha_CAPACITY=86400

As we test-run news3, we can see how data segments are spread:

1501858803: >> SEGMENT: disk1/news3/20170804-18/7820397290.ts 1501858802 5.000000 1664364 0 7820397290
2017-08-04 MSK 18:00:03 vsm 2256 base gxseg(2304) is running, playlist=/opt/gxa/channel/news3/gxseg0-news3.m3u8
2017-08-04 MSK 18:00:03 vsm 2256 Launched news3/http://enc14.4net.tv:4046/udp/239.222.55.102:5000
2017-08-04 MSK 18:00:03 vsm 2256 Waiting for gxseg(2304)

Version 0.1 August 1, 2017 12

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

1501858808: >> SEGMENT: disk2/news3/20170804-18/7820847290.ts 1501858803 5.000000 1706852 0 7820847290
1501858813: >> SEGMENT: disk3/news3/20170804-18/7821297290.ts 1501858808 5.000000 1658160 0 7821297290
1501858818: >> SEGMENT: disk1/news3/20170804-18/7821747290.ts 1501858813 5.000000 1675644 0 7821747290
1501858823: >> SEGMENT: disk2/news3/20170804-18/7822197290.ts 1501858818 5.000000 1700648 0 7822197290
1501858828: >> SEGMENT: disk3/news3/20170804-18/7822647290.ts 1501858823 5.000000 1604768 0 7822647290
1501858833: >> SEGMENT: disk1/news3/20170804-18/7823097290.ts 1501858828 5.000000 1758176 0 7823097290

$ ls /opt/disk1/news3/20170804-18/
7820397290.ts 7821747290.ts 7823097290.ts 7824447290.ts 7825797290.ts
$

We start news3 in the regular fashion now:
$ sudo ./gxa-channels.sh start news3
gxpm [1902] is running
appending output to nohup.out
news3 [2410] is running
Pausing for [5] seconds..
gxpm [1902] is running

Channels:
news3: (ON) uptime: 00d 00h:00m:06s

Setting up for 24/7 service
Reading material for this section is vsm-scripts(5) page from GigA+ and the crontab(8) page from the
system documentation. For reference on spec parameters, please consider re-reading vsm(1) documenta-
tion.

The first thing we do is: we add (uncomment) cha_ADMIN_EMAIL parameter in all our specs and set it
to a valid email of a dedicated tech-support person.

The next thing to consider is scheduling rollovers. From prior experience, a rollover should happen at least
once per day. Things can (potentially) go wrong during a rollover, so it should not be done at the busy
hours. Neither should it be at an hour when a failure would be unnoticed - it’s truly your call when it
should happen. For this example I picked the time close to 5 am for rollovers on the three channels we’ve
set up.

Another consideration is NOT to roll over all channels at once. Should rollovers fail on more than one
channel, nobody wants to handle it all at once. But scheduling is truly your call.

Log rotation for vsm and gxseg is next. hos script will do that (see vsm-scripts(5) for proper options).
For each channel we create (set up) a log-archive directory under /opt/gxa/log: archive/channel1, ar-
chive/champ2, etc. Of course, those directories could be just links to another partition/storage, if needed
(would make sense to keep archives on a slower medium than segment files and meta-data).

hos also does segment rotation. gxpm handles rotation only when a channel is ONLINE, so hos is needed
for the (inevitable) cases when a channel goes OFFLINE and gxsm no longer remembers the segments left
behind. hos is a safety belt, in a way. We want to schedule at least one run of it that would rotate vsm.log.
We also schedule a status report that would alert us if any channels are offline. A channel that is supposed
to be offline should have a SUSPEND file in its root directory, as in /opt/gxa/channel/champ2/SUSPEND.

The crontab now looks like below:

Version 0.1 August 1, 2017 13

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

$ sudo -u gigaplus crontab -l
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/bin:/usr/local/sbin
SHELL=/usr/local/bin/bash
#
CABLE1
#
Hourly hos(1).
34 * * * * /usr/local/bin/hos --sysrep cable1
Daily hos(1) to rotate vsm log.
20 2 * * * /usr/local/bin/hos --sysrep -L cable1
Roll-over
30 0 * * * /opt/gxa/tmp/force-rollover.sh /opt/gxa/channel/cable1
#
CHAMP2
#
Hourly hos(1).
12 * * * * /usr/local/bin/hos --sysrep champ2
Daily hos(1) to rotate vsm log.
45 2 * * * /usr/local/bin/hos --sysrep -L champ2
Roll-over
40 0 * * * /opt/gxa/tmp/force-rollover.sh /opt/gxa/channel/champ2
#
NEWS3
#
Hourly hos(1).
05 * * * * /usr/local/bin/hos --sysrep news3
Daily hos(1) to rotate vsm log.
57 2 * * * /usr/local/bin/hos --sysrep -L news3
Roll-over
20 0 * * * /opt/gxa/tmp/force-rollover.sh /opt/gxa/channel/news3
##
COMMON
##
Hourly alert:
36 * * * * /opt/gxa/tmp/gxa-channels.sh --alert status
40 * * * * /usr/local/bin/hos --common --sysrep any
#
END OF TABLE

NB: having PATH and SHELL assignments is crucial for cron jobs’ work under FreeBSD. hos relies on
finding bash(1) via env(1) which is impossible from cron(8) environment without the pre-set PATH. Do
note that under Linux bash is NOT under /usr/local.

Once you’ve set up the crontable(8) , do make sure you’ve seen your jobs run before you leave the system
be. Go to a mail client (like alpine(1)) and check your email from cron jobs. Make sure to invoke the mail
client under gigaplus user as in:

$ sudo -u gigaplus alpine

We start all channels with the gxa-channels.sh script now.

[bsl45@wi-fbsd11 ˜/tmp]$ sudo ./gxa-channels.sh start
gxpm [1902] is running
appending output to nohup.out

Version 0.1 August 1, 2017 14

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

cable1 [3554] is running
appending output to nohup.out
champ2 [3645] is running
appending output to nohup.out
news3 [3732] is running
Pausing for [5] seconds..
gxpm [1902] is running

Channels:
cable1: (ON) uptime: 00d 00h:00m:07s
champ2: (ON) uptime: 00d 00h:00m:06s
news3: (ON) uptime: 00d 00h:00m:06s
$

Playback: testing the whole chain
We start gxws, gxng using the control script:

$ sudo ./gxa-requests.sh --nopin start
Password:
[GXWS] is not running.
GXPM [18474] is running
Starting GXWS ...
Starting GXNG1 ...
Pausing for 1 second(s).
GXWS [19155] STARTED
GXNG [19167] STARTED
GXPM [18474] STARTED
$
$ sudo ./gxa-requests.sh status
GXPM [18474] is running
GXWS [19155] is running
GXNG [19167] is running
$

Requesting non-HLS channel from gxws:

$ wget -O /dev/null ’http://192.168.1.112:4046/udp/239.1.2.30:3333’
--2017-08-09 18:40:01-- http://192.168.1.112:4046/udp/239.1.2.30:3333
Connecting to 192.168.1.112:4046... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [application/octet-stream]
Saving to: â/dev/nullâ

[<=>] 9Â 839Â 276 652KB/s ˆ

Using the same URL with vlc or another player should result in the playback of the unicast-relayed chan-
nel.

Playing back an HLS channel:

$ cvlc -vvv http://192.168.1.112:4046/hls-m3u/champ2/playlist.m3u8

[00007f25a0c03df8] httplive stream debug: updating hls stream (program-id=0, bandwidth=0) has 6 segments
[00007f25a0c03df8] httplive stream debug: - segment 85 appended

Version 0.1 August 1, 2017 15

gxa-setup(5) GigA+ setup manual page gxa-setup(5)

[00007f25a0c03df8] httplive stream debug: - segments new max duration 4
[00007f25a0c03df8] httplive stream debug: - segment 86 appended
[00007f25a0c03df8] httplive stream debug: - segments new max duration 4
[00007f25a0c03df8] core stream debug: creating access ’http’ location=’192.168.1.112:4046/hls-fra/champ2/20170810-13/41849760.ts’, path=’(null)’
[00007f259c000958] core access debug: looking for access module matching "http": 25 candidates
[00007f259c000958] http access debug: querying proxy for http://192.168.1.112:4046/hls-fra/champ2/20170810-13/41849760.ts
[00007f259c000958] http access debug: no proxy
[00007f259c000958] http access debug: http: server=’192.168.1.112’ port=4046 file=’/hls-fra/champ2/20170810-13/41849760.ts’
[00007f259c000958] core access debug: net: connecting to 192.168.1.112 port 4046
[00007f259c000958] core access debug: connection succeeded (socket = 12)
[00007f259c000958] http access debug: protocol ’HTTP’ answer code 200
[00007f259c000958] http access debug: Server: gxws/0.1-3.24 (fea454-setup)
[00007f259c000958] http access debug: Content-Type: video/MP2T

This concludes the single-server setup for GigA+. Steps invloving multi-server load-balanced setup pro-
cedure are given in the gxa-lb-setup(5) page of the documentation.

AUTHORS
Pavel V. Cherenkov

SEE ALSO
gigaplus(1),gxng(1),gxpm(1),vsm(1),vsm-scripts(1),gxseg(1),ncl(1),multicat(1),ffprobe(1),mailx(1)

Version 0.1 August 1, 2017 16

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

NAME
gxa-lb-setup is a HOWTO manual to set up GigA+ on one central-point (CP) server with N >= 1 addi-
tional load-balancing nodes (LBNs).

SYNOPSIS
This document provides an example of the steps needed to set up GigA+ on a central-point (CP1) server,
with data replication covering multiple (N >= 1) load-balancing nodes. The manual will be specific to
HLS-only setup, without linear-stream delivery, and with nginx(1) third-party HTTP server used both for
segment delivery (instead of gxng(1)) and as the load-balancing gateway (or router).

INSTALLA TION and REMOVAL
These steps should be re-traced from gxa-setup(5) page, they won’t differ since the package is the same.
All functionality already covered by the non-balanced setup manual will be skipped.

Our CP1 server is going to be running Ubuntu 14.04 LTS (only for the sake of example).

SETUP of request handlers
The first steps would be to set up gxws(1) to work without gxng(1) modules and then nginx(1) as the web-
server for the segment files.

gxws setup
The initial alterations are, as usual, for the concrete network interfaces, so we change all as the interface
name to eth0. Another thing to do is to mark the user interface as one not requiring a gxng(1) component.
This is done in gigaplus.conf as:

listener: {
admin = { ifc = "lo"; port = "4047"; default_af = "inet"; };
user = { ifc = "eth0"; port = "4046"; default_af = "inet"; no_gng = true; };

};

First we run gxws manually in debug mode to see that the config works:

˜/tmp$ rm -f gxws.log && sudo -u gigaplus gxws -Tvvv -C /opt/gxa/etc/gigaplus.conf -l gxws.log

less gxws.log
2017-08-11 17:04:46.326512 MSK 4962 (INF) GWS STARTED listener fd7 for USER requests on eth0:4046; 0 requests pending

˜ $ wget -O /dev/null ’http://192.168.1.103:4046/ping’
--2017-08-11 16:56:20-- http://192.168.1.103:4046/ping
Connecting to 192.168.1.103:4046... connected.
HTTP request sent, awaiting response... 400 Bad request
2017-08-11 16:56:20 ERROR 400: Bad request.
$

The listener is up and responded to a ping with HTTP 400 (Bad request), which indicates that requests are
received and processed. We can proceed to the next step.

nginx setup
We install nginx and set up web-accessible directories to allow access to segment files. Setting up is quite
simple:

Version 0.1 August 11, 2017 1

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

$ sudo apt-get update
$ sudo apt-get install nginx
˜/tmp$

There is an example of a NginX config in /usr/share/doc/gigaplus/examples/nginx/server.conf (on Linux,
please use /usr/local on BSD). It has a section that opens up access to our /opt/gxa/channel directory
via HTTP port 8181.

#
Direct access to data segments.
#
location /channel/ {

root /opt/gxa/;
autoindex on;

}

We can add this config to NginX and test the access.
$ cp /usr/share/doc/gigaplus/examples/nginx/server.conf /opt/gxa/etc/nginx-gxa.conf
$ sudo ln -s /opt/gxa/etc/nginx-gxa.conf /etc/nginx/conf.d/nginx-gxa.conf
$ pgrep nginx
5492
5493
5494
5495
5496
$ sudo nginx -s reload
$ echo ’empty’ > /opt/gxa/channel/empty.txt
$ wget -O /dev/null ’http://192.168.1.103:8181/channel/empty.txt’
--2017-08-11 17:40:55-- http://192.168.1.103:8181/channel/empty.txt
Connecting to 192.168.1.103:8181... connected.
HTTP request sent, awaiting response... 200 OK
Length: 6 [text/plain]
Saving to: â/dev/nullâ

100%[==>] 6 --.-K/s in 0s

2017-08-11 17:40:55 (635 KB/s) - â/dev/nullâ saved [6/6]

$

Also, you can open http://192.168.1.103:8181/channel/ (mind the IP) in a browser to see empty.txt listed. In
any case, we can now retrieve files from our CP1 server via NginX.

gxpm setup
We can modify gxpm(1) config to provide NginX-oriented URLs in the playlists. First we make it point at
CP1 cerver, which is NOT the final version of the config since data segments will be distributed across the
nodes (LBNs). The nodes we are yet to set up, but we enable notifications via a multicast group. For now,
we make the following changes in /opt/gxa/etc/gigaplus.conf:

gpm.item_url_prefix = "http://192.168.1.103:8181/channel/";
gpm.md_report: {

enabled = true;

Version 0.1 August 11, 2017 2

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

pub_url = "udp://227.3.2.160:2020";
lid: { prefix = "wi-ub1404"; min = 100; max = 299; };
src_base = "http://192.168.1.103:8181/channel";
mcast_ifc = "eth0";

};

Setting item_url_prefix will provide URLs for access via NginX. Enabling reports means that for each new
segment registered by gxpm there’ll be a multicast message to the pub_url group that dwgs should sub-
scribe to. We link our configs to /etc to make them globally visible and test-start gxws(1) and gxpm(1) via
script.

$ sudo ln -s /opt/gxa/etc/gigaplus.env /etc/gigaplus.env
$ sudo ln -s /opt/gxa/etc/gigaplus.conf /etc/gigaplus.conf
$ ln -s /usr/share/gigaplus/scripts/gxa-requests.sh
$ ln -s /usr/share/gigaplus/scripts/gxa-channels.sh
$
$./gxa-requests.sh status
[GXPM] is not running.
[GXWS] is not running.
$
$ sudo ./gxa-requests.sh --nopin start none
[GXWS] is not running.
[GXPM] is not running.
Starting GXPM ...
Starting GXWS ...
Pausing for 1 second(s).
GXWS [6225] STARTED
GXPM [6220] STARTED
$
$ tail -f /opt/gxa/log/gxws.log
===
2017-08-11 18:14:49.699713 MSK 6225 (INF) GWS STARTED listener fd5 for USER requests on eth0:4046; 0 requests pending
2017-08-11 18:14:49.699736 MSK 6225 (INF) GWS STARTED listener fd6 for ADMIN requests on lo:4047; 0 requests pending
2017-08-11 18:14:49.699807 MSK 6225 (INF) GWS STARTED listener fd7 for MODULE requests on /opt/gxa/run/comm.socket:; 0 requests pending
2017-08-11 18:14:49.699828 MSK 6225 (CRI) GWS GWS [pid=6225] is running.
2017-08-11 18:14:49.699892 MSK 6225 (INF) GWS Entering event loop
$
$ tail -f /opt/gxa/log/gpm.log

2017-08-11 18:14:44.658837 MSK 6220 (INF) GPM STARTED listener fd4 for URQ requests on /opt/gxa/run/gpm-S.sock:; 0 requests pending
2017-08-11 18:14:44.658894 MSK 6220 (INF) GPM STARTED listener fd5 for URQ requests on /opt/gxa/run/gpm-Y.sock:; 0 requests pending
2017-08-11 18:14:44.658922 MSK 6220 (NRM) GPM gxpm (Playlist manager) 0.1-4.4 (fea468-lb) regular [Ubuntu 14.04.5 Linux (amd64)
2017-08-11 18:14:44.658931 MSK 6220 (INF) GPM Config read from [/etc/gigaplus.conf]
2017-08-11 18:14:44.658943 MSK 6220 (INF) GPM Entering event loop
$

Both components are running, with gxws running without gxngs. Please kindly note that in order NOT to
start gxngs we’ve used the none parameter in gxa-requests.sh.

Setting up channels
We set up the same channels we did in the single-server manual (see gxa-setup(5) for details).

Version 0.1 August 11, 2017 3

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

Checking URLs in the playlist
We will set up one channel and verify that gxpm generates playlists with valid URLs, resolvable via nginx.

$ sudo ./gxa-channels.sh start cable1
[gxpm] is not running.
Starting GXPM ...
gxpm [8210] is running
nohup: redirecting stderr to stdout
cable1 [8218] is running
Pausing for [5] seconds..
gxpm [8210] is running
----- channels -----
(ON) cable1 uptime: 00d 00h:00m:05s

$
$ sudo ./gxa-requests.sh --nopin start none
[GXWS] is not running.
GXPM [8210] is running
Starting GXWS ...
Pausing for 1 second(s).
GXWS [8333] STARTED
GXPM [8210] STARTED
$
$ wget ’http://192.168.1.103:4046/hls-m3u/cable1/playlist.m3u8’
--2017-08-11 22:32:04-- http://192.168.1.103:4046/hls-m3u/cable1/playlist.m3u8
Connecting to 192.168.1.103:4046... connected.
HTTP request sent, awaiting response... 200 OK
Length: 601 [application/x-mpegURL]
Saving to: âplaylist.m3u8â

100%[===>] 601 --.-K/s in 0s

2017-08-11 22:32:04 (62,1 MB/s) - âplaylist.m3u8â saved [601/601]

$ cat playlist.m3u8
#EXTM3U
#EXT-X-VERSION:3
#EXT-X-ALLOW-CACHE:YES
#EXT-X-TARGETDURATION:5
#EXT-X-MEDIA-SEQUENCE:21
#EXTINF:4.800000,
http://192.168.1.103:8181/channel/cable1/20170811-22/768766796.ts
#EXTINF:4.800000,
http://192.168.1.103:8181/channel/cable1/20170811-22/769198796.ts
#EXTINF:4.800000,
http://192.168.1.103:8181/channel/cable1/20170811-22/769630796.ts
#EXTINF:4.800000,
http://192.168.1.103:8181/channel/cable1/20170811-22/770062796.ts
#EXTINF:4.800000,
http://192.168.1.103:8181/channel/cable1/20170811-22/770494796.ts
#EXTINF:4.800000,
http://192.168.1.103:8181/channel/cable1/20170811-22/770926796.ts
$

Version 0.1 August 11, 2017 4

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

Let’s see if we can get one of the segments by that link (bypassing gxws and going directly to nginx):

$ wget -O /dev/null http://192.168.1.103:8181/channel/cable1/20170811-22/770926796.ts
--2017-08-11 22:32:40-- http://192.168.1.103:8181/channel/cable1/20170811-22/770926796.ts
Connecting to 192.168.1.103:8181... connected.
HTTP request sent, awaiting response... 200 OK
Length: 6242540 (6,0M) [application/octet-stream]
Saving to: â/dev/nullâ

100%[==>] 6Â 242Â 540 --.-K/s in 0,05s

2017-08-11 22:32:40 (114 MB/s) - â/dev/nullâ saved [6242540/6242540]
$

SEGMENT REPLICA TION
In order to load-balance streams, we are planning to replicate data segments (from selected channels) to
multiple servers (three, for this exapmle) and have a mediator component bounce requests between them.
We start with a simple case of replicating a channel to one additional server (LBN1).

In GigA+ dwg(1) is the component (download agent) on the receiving end of the replication. Please read
dwg(1) manpage for details.

Install and configure dwg on LBN1
In this section we install the necessary component? get a system key + license and set dwg up to receive
download tasks (as the only agent on that host). Although we only need one module, it’s easier to install the
whole package. The received license will apply only to dwg though. We get the key the usual way:

wi-deb8:˜/tmp$ dwg -K
System key: [dcd184816e87f8b0abc90936212c6c91b7dd2c72cbb156fc] (0x204a)

We also add the current user to the adm group to enable access to newly-created /opt/gxa and subdirecto-
ries. From /etc/gxa-lb.conf we copy a generic config for load-balancing components and modify it to suit
out needs. For now, we disable dwag.lbdb by setting dwag.lbdb.port = 0;. We also change local_url prefix
as: local_url_prefix = "http://192.168.1.105:8181/"; to match the IP address of the host.

We also disable (for now) dwag.lbdb on the CP host (wi-ub1404) and adjust its local_url_prefix.

Let’s run dwg(1) with default config and check if it starts:

wi-deb8:/opt/gxa/etc$ sudo dwg -0
sudo dwg -0
wi-deb8:˜/tmp$ pgrep dwg
16569
wi-deb8:˜/tmp$ tail -f /opt/gxa/log/dwg.log

task time-out = 3000 ms
mmap up to = 3 MB
local URL prefix = http://192.168.1.105:8181

2017-08-16 16:08:27.080209 MSK 16569 (INF) DWG mcast_join: using GENERIC mulitcast API to MCAST_JOIN group 227.3.2.160:2020
2017-08-16 16:08:27.082231 MSK 16569 (INF) DWG udl_ctx_init: fd2 set up to listen on [udp://227.3.2.160:2020]
2017-08-16 16:08:27.082385 MSK 16569 (NRM) DWG dwg (Download manager) 0.1-4.13 (fea468-lb2) regular [Debian 8 Linux (amd64)
2017-08-16 16:08:27.082402 MSK 16569 (INF) DWG Config read from [./dwg.conf]
2017-08-16 16:08:27.082417 MSK 16569 (INF) DWG Entering event loop

Version 0.1 August 11, 2017 5

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

wi-deb8:/opt/gxa/etc$ sudo ln -s /opt/gxa/etc/dwg.conf /etc/dwg.conf

It makes sense to check if multicast data is received well. We do that via ncl(1) utility, running it on both
ends:

wi-ub1404:/opt/gxa/etc$ ncl -wuv -a 227.3.2.160 -p 2020 -d 50
mk_sock: client socket fd=[3]
WRITE [+MEM+] to fd=3, msg_size=1400 delay=50 ms
49000 bytes 2 sec 23.926 Kb/sec, total=47.852 Kb
56000 bytes 2 sec 27.344 Kb/sec, total=102.539 Kb
56000 bytes 2 sec 27.344 Kb/sec, total=157.227 Kb
56000 bytes 2 sec 27.344 Kb/sec, total=211.914 Kb
56000 bytes 2 sec 27.344 Kb/sec, total=266.602 Kb
ˆCSIG(2) DONE
total sent to fd=3: 287000 bytes

I/O: 280.273438 Kb within 10.236886 sec; 27.378780 Kb/sec

wi-deb8:/opt/gxa/etc$ ncl -ru -a 227.3.2.160 -p 2020
reading from fd=3, msg_size=1400 delay=0 ms
15.723 Kb/sec, total=31.445 Kb
27.344 Kb/sec, total=86.133 Kb
27.344 Kb/sec, total=140.820 Kb
ˆCSIG(2) DONE
total received from fd=3: 162400 bytes

We also need to create directories for the channels we’d be replicating: cable1, champ2 and news3:

wi-deb8:/opt/gxa/etc$ sudo -u gigaplus mkdir -p -m 775 /opt/gxa/channel/cable1 /opt/gxa/channel/champ2
wi-deb8:/opt/gxa/etc$ sudo -u gigaplus mkdir -p -m 775 /opt/gxa/channel/news3 /opt/gxa/channel/disk1/news3 /opt/gxa/channel/disk2/news3 /opt/gxa/channel/disk3/news3

We start cable1 on CP host (wi-ub1404) and check for multicast-group messages on our LBN1 (wi-deb8):

wi-ub1404:/opt/gxa/tmp$ sudo ./gxa-channels.sh start cable1

wi-deb8:/opt/gxa/etc$ ncl -ruv -a 227.3.2.160 -p 2020
reading from fd=3, msg_size=1400 delay=0 ms
READ [108]:0.053 Kb/sec, total=0.105 Kb
$

Now we start dwg on LBN1 and see if it would process notifications correctly and download segments
where they belong.

wi-deb8:/opt/gxa/etc$ sudo dwg -0
wi-deb8:/opt/gxa/etc$ pgrep dwg
17409
wi-deb8:/opt/gxa/etc$ tail -f dwg.log

2017-08-16 19:39:49.856307 MSK 17475 (INF) T0002 read_src_response: ready to download 5857704 bytes to [/opt/gxa/channel/cable1/20170816-19/4362345228.ts-Dwag]
2017-08-16 19:39:49.872506 MSK 17475 (NRM) T0002 downloaded: 5857704 bytes, [http://192.168.1.103:8181/channel/cable1/20170816-19/4362345228.ts] to [/opt/gxa/channel/cable1/20170816-19/4362345228.ts]
2017-08-16 19:39:54.606954 MSK 17475 (INF) T0003 read_src_response: ready to download 6144968 bytes to [/opt/gxa/channel/cable1/20170816-19/4362777228.ts-Dwag]
2017-08-16 19:39:54.620001 MSK 17475 (NRM) T0003 downloaded: 6144968 bytes, [http://192.168.1.103:8181/channel/cable1/20170816-19/4362777228.ts] to [/opt/gxa/channel/cable1/20170816-19/4362777228.ts]

We’ll need hos set up on LBNx (node hosts) to clean up stale data segments. For that, we first copy
cable1.spec from CB. Then we need to mark cable1 as a REPLICA channel (this way gxa-channels.sh

Version 0.1 August 11, 2017 6

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

won’t alert on vsm being down).

wi-deb8:/opt/gxa/tmp$ ln -s /usr/share/gigaplus/scripts/gxa-channels.sh
wi-deb8:/opt/gxa/tmp$ touch /opt/gxa/channel/cable1/REPLICA
wi-deb8:/opt/gxa/tmp$./gxa-channels.sh status
[gxpm] is not running.
----- channels -----
(REPL) cable1 [214 MB]

$
wi-deb8:˜/tmp$ sudo -u gigaplus crontab -l
##
CABLE1
##
Hourly hos(1)
55 * * * * /usr/bin/hos --sysrep cable1
Common logs
30 02 * * * /usr/bin/hos --common any
END OF TABLE

NB: If setting up under FreeBSD, please make sure to include PATH and SHELL settings as the top lines of
your crontab(8) and also verify that your jobs work by checking (sudo -u gigaplus) local email from cron.

LOAD BALANCING ON MUL TIPLE NODES
In this section we need to set up a small NoSQL (Redis) database for load balancing - hereinforth LBDB.
Then we hook up the existing (LBN1) node to it. Then we set up and plug in two additional nodes: LBN2
and LBN3. In the end we’d have CP1 replicating to LBN1-LBN3, with load balancing across CP1 and the
nodes.

Set up LBDB on CP1 and LBN1
Our database could be set up on CP1 or on any LBN host, you should use your own judgement to decide
where it should be. (Think of how far and busy your server may get, consider RAM resources for the data-
base - those would depend on how many segments you keep for the replicated channels.)

For reference on how to set up and administer Redis DB, please refer to the documentation on their website.

For the database host you do not need a GigA+ license. All you need is Redis DB installed and connectiv-
ity established from other hosts to LBDB. In this manual we’ll set it up on a separate host that is neither a
CP or an LBN.

[wi-c70 tmp]$ type redis-cli
redis-cli is /usr/bin/redis-cli
[wi-c70 tmp]$
[wi-c70 tmp]$ /sbin/ifconfig
ens192: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

inet 192.168.1.101 netmask 255.255.255.0 broadcast 192.168.1.255

Before we go further, we edit redis.conf (here in /etc) and bind the listener to both the external and the loop
interface.

[@wi-c70 tmp]$ sudo systemctl status redis
redis.service - Redis persistent key-value database
Loaded: loaded (/usr/lib/systemd/system/redis.service; disabled; vendor preset: disabled)
Drop-In: /etc/systemd/system/redis.service.d

ââlimit.conf

Version 0.1 August 11, 2017 7

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

Active: inactive (dead)
[@wi-c70 tmp]$
[@wi-c70 tmp]$ sudo systemctl enable redis
Created symlink from /etc/systemd/system/multi-user.target.wants/redis.service to /usr/lib/systemd/system/redis.service.
[@wi-c70 tmp]$ sudo systemctl start redis
[@wi-c70 tmp]$ sudo systemctl status redis
redis.service - Redis persistent key-value database

Loaded: loaded (/usr/lib/systemd/system/redis.service; enabled; vendor preset: disabled)
Drop-In: /etc/systemd/system/redis.service.d

ââlimit.conf
Active: active (running) since ÐÐ½ 2017-08-21 14:00:24 MSK; 6s ago

Main PID: 2422 (redis-server)
CGroup: /system.slice/redis.service

ââ2422 /usr/bin/redis-server 192.168.1.101:6379

Ð°Ð²Ð³ 21 14:00:24 wi-c70.localdomain systemd[1]: Started Redis persistent key-value database.
Ð°Ð²Ð³ 21 14:00:24 wi-c70.localdomain systemd[1]: Starting Redis persistent key-value database...

[wi-c70 tmp]$ redis-cli ping
PONG

On CP1 and LBN1 we install redis-tools and check the connectivity.

wi-ub1404:/opt/gxa/tmp$ sudo apt-get install redis-tools
Processing triggers for libc-bin (2.19-0ubuntu6.13) ...
wi-ub1404:/opt/gxa/tmp $
wi-ub1404:/opt/gxa/tmp$ redis-cli -h 192.168.1.101 -p 6379 ping
PONG
$
wi-deb8:/opt/gxa/tmp$ redis-cli -h 192.168.1.101 -p 6379 ping
PONG

Now we can initialize the LBDB, and we’ll do it from CP1. The distribution provides with the means to set
up the Redis Lua scripts - LBDB’s stored procedures. There is an LBDB-specific directory under
/opt/gxa, we do it from there:

wi-ub1404:/opt/gxa/tmp$ cd /opt/gxa/lbdb/
wi-ub1404:/opt/gxa/lbdb$ sudu -u gigaplus ln -s /usr/share/gigaplus/scripts/lbdb lua
wi-ub1404:/opt/gxa/lbdb$
wi-ub1404:/opt/gxa/lbdb$ ls -l lua/
total 20
-rw-r--r-- 1 root root 1020 Aug 18 20:41 add_url.lua
-rw-r--r-- 1 root root 527 Aug 18 20:41 del_url.lua
-rwxr-xr-x 1 root root 1721 Aug 18 20:41 load-lbdb-lua.sh
-rw-r--r-- 1 root root 3687 Aug 18 20:41 mbget_url.lua
-rw-r--r-- 1 root root 1967 Aug 18 20:41 next_url.lua
$
wi-ub1404:/opt/gxa/lbdb$ lua/load-lbdb-lua.sh
Usage: lua/load-lbdb-lua.sh [-n] lua
You may wish to define:

LBDB_HOST = DB hostname
LBDB_PORT = DB port
LBDB_LUA_DIR = source directory
LBDB_SHA1_DIR = destination directory

in lbdb.config

Version 0.1 August 11, 2017 8

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

As the load-script (load-lbdb-lua.sh), we should set up lbdb.config, which is just a shell script to set up the
environment for load-lbdb-lua.sh. We also create a separate directories for SHA1 signatures of the LBDB
stored procedures.

wi-ub1404:/opt/gxa/lbdb$ cat lbdb.config
#!/bin/sh
@(#) LBDB configuration script.

Host and port for RedisDB
#
LBDB_HOST=192.168.1.101
LBDB_PORT=6379

Directory with LBDB lua scripts:
LBDB_LUA_DIR=/opt/gxa/lbdb/lua

Directory for SHA1 signatures.
LBDB_SHA1_DIR=/opt/gxa/lbdb/sha1

__EOF__
$
wi-ub1404:/opt/gxa/lbdb$ chown gigaplus:adm lbdb.config
wi-ub1404:/opt/gxa/lbdb$ sudo -u gigaplus mkdir sha1
wi-ub1404:/opt/gxa/lbdb$ ls -l
total 8
-rw-rw-r-- 1 gigaplus adm 160 Aug 21 14:50 lbdb.config
lrwxrwxrwx 1 gigaplus gigaplus 32 Aug 21 15:40 lua -> /usr/share/gigaplus/scripts/lbdb
drwxr-xr-x 2 gigaplus gigaplus 4096 Aug 21 15:40 sha1
wi-ub1404:/opt/gxa/lbdb$./lua/load-lbdb-lua.sh
Usage: ./lua/load-lbdb-lua.sh [-n] lua
wi-ub1404:/opt/gxa/lbdb$

We first run load-lbdb-lua.sh in simulation mode, to see if every check it makes passes, and also to see what
exactly it does:

wi-ub1404:/opt/gxa/lbdb$ sudo -u gigaplus lua/load-lbdb-lua.sh -n
2017-08-21 MSK 16:20:07 WARNING: dry-run mode
redis-cli -h 192.168.1.101 -p 6379 SCRIPT LOAD cat /opt/gxa/lbdb/lua/add_url.lua > /opt/gxa/lbdb/sha1/add_url.sha1
redis-cli -h 192.168.1.101 -p 6379 SCRIPT LOAD cat /opt/gxa/lbdb/lua/del_url.lua > /opt/gxa/lbdb/sha1/del_url.sha1
redis-cli -h 192.168.1.101 -p 6379 SCRIPT LOAD cat /opt/gxa/lbdb/lua/next_url.lua > /opt/gxa/lbdb/sha1/next_url.sha1
redis-cli -h 192.168.1.101 -p 6379 SCRIPT LOAD cat /opt/gxa/lbdb/lua/mbget_url.lua > /opt/gxa/lbdb/sha1/mbget_url.sha1
2017-08-21 MSK 16:20:07 Done

The script quite simply loads stored procedures (a.k.a. Redis Lua scripts) into LDBD and stores the
returned SHA1 signatures as .sha1 files.

wi-ub1404:/opt/gxa/lbdb$ sudo -u gigaplus lua/load-lbdb-lua.sh lua
2017-08-21 MSK 16:25:48 /opt/gxa/lbdb/lua/add_url.lua to 192.168.1.101:6379
add_url SHA1=[94357c7cad39fe76cfd90567c88d6f4d483d5dc1]
2017-08-21 MSK 16:25:48 /opt/gxa/lbdb/lua/del_url.lua to 192.168.1.101:6379
del_url SHA1=[b8da283c527d6d8d5a1ffed82f6f135dd186fc8d]
2017-08-21 MSK 16:25:48 /opt/gxa/lbdb/lua/next_url.lua to 192.168.1.101:6379
next_url SHA1=[abac8ac437da8c3b1ab7647954bb51fec5a2a950]
2017-08-21 MSK 16:25:48 /opt/gxa/lbdb/lua/mbget_url.lua to 192.168.1.101:6379
mbget_url SHA1=[05e67bab2fa4c3bc48844d5a511adc6f803c625b]
2017-08-21 MSK 16:25:48 Done
wi-ub1404:/opt/gxa/lbdb$

Version 0.1 August 11, 2017 9

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

wi-ub1404:/opt/gxa/lbdb$ cat sha1/add_url.sha1
94357c7cad39fe76cfd90567c88d6f4d483d5dc1

The load-balancing hosts will reference LDBD stored procedures via their SHA1 signatures, so for LBN1
all we need are those signatures that we’ve just generated on CP1. We just make a directory on LBN1
(wi-deb8) and copy signatures there:

wi-deb8:/opt/gxa/tmp$ cd ../lbdb
wi-deb8:/opt/gxa/lbdb$ sudo -u gigaplus mkdir -m 775 sha1
wi-deb8:/opt/gxa/lbdb$ sudo chown gigaplus:adm sha1
wi-deb8:/opt/gxa/lbdb$ ls -l
total 4
drwxrwxr-x 2 gigaplus adm 4096 Aug 21 16:34 sha1
$
wi-ub1404:/opt/gxa/lbdb$ scp sha1/*.sha1 wi-deb8:/opt/gxa/lbdb/sha1/
add_url.sha1 100% 41 0.0KB/s 00:00
del_url.sha1 100% 41 0.0KB/s 00:00
mbget_url.sha1 100% 41 0.0KB/s 00:00
next_url.sha1 100% 41 0.0KB/s 00:00
$
wi-deb8:/opt/gxa/lbdb$ sudo chown gigaplus:adm sha1/*.sha1
$

We’ll re-configure dwg(1) now on both hosts to reference LDBD. Then we’ll test-launch dwg to see that
the settings work.

wi-deb8:/opt/gxa/etc$ diff dwg.conf dwg.conf.old
40c40
< max_mmap_mb = 8;

> max_mmap_mb = 3;
43,44c43,45
< host = "192.168.1.101";
< port = 6379;

> host = "127.0.0.1";
> port = 0;
> # port = 6379;
47c48
< sha1_dir = "/opt/gxa/lbdb/sha1";

> sha1_dir = "/opt/gxa/lbdb";
wi-deb8:/opt/gxa/etc$

First we increased the maximum size of the file that dwg would mmap(2) into memory (to save on
repeated write(2) syscalls) to 8 Mb - judging by the maximum size of segments processed so far. This has
nothing to do with load balancing, it’s just an optimization that we’ve applied before dwg starts working
under load.

Then we changed localhost binding to the address:port of the database we’ve set up. By setting port to
non-zero, we made dwg LBDB-aware. We also corrected sha1_dir to point at the directory for the SHA1
signatures. Now we can test-launch dwg:

wi-deb8:/opt/gxa/log$ tail -f dwg.log
Load-balancer DB: 192.168.1.101:6379

Connect timeout = 0.500000 sec
SHA1 directory = /opt/gxa/lbdb/sha1

2017-08-21 16:55:33.137712 MSK 1303 (INF) DWG mcast_join: using GENERIC mulitcast API to MCAST_JOIN group 227.3.2.160:2020

Version 0.1 August 11, 2017 10

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

2017-08-21 16:55:33.139722 MSK 1303 (INF) DWG udl_ctx_init: fd2 set up to listen on [udp://227.3.2.160:2020]
2017-08-21 16:55:33.140318 MSK 1303 (INF) DWG lbdb_connect: connected to 192.168.1.101:6379
2017-08-21 16:55:33.140914 MSK 1303 (NRM) DWG dwg (Download manager) 0.1-4.22 (fea468-lb3) regular [Debian 8 Linux (amd64)
2017-08-21 16:55:33.140935 MSK 1303 (INF) DWG Config read from [/etc/dwg.conf]
2017-08-21 16:55:33.140945 MSK 1303 (INF) DWG Entering event loop
ˆC

We can see now that dwg has successfully connected to LBDB from LBN1. The procedure (update config
and test-launch) is then repeated on CP1 (and later, on all other participating LBNs).

Please note, that dwg needs to be running ONLY on the hosts participating in load balancing and serving
data segments. If you opted for a configuration where CP1 is just generating data (to replicate to LBNs),
then you don’t need dwg running on CP1.

Set up flb - load balancing FastCGI module on CP1
Now we are to set up the component that would do the actual balancing, i.e. decide which of the nodes
(including the participating CP1) to direct data-segment requests to. The name of the component is flb(1)
and it is run not as a stand-alone executable, but as a FastCGI module of a web server, NginX in our case.
Support for other web servers, such as Apache, has not been tested yet. flb(1) will use LBDB to make rout-
ing decisions, so we must edit its configuration (in gigaplus.conf).

wi-ub1404:/opt/gxa/etc$ diff gigaplus.conf g1.conf
294,295d293
< listener = ":9191";
<
302c302,303
< host = "192.168.1.101";

> # Database connection:
> host = "127.0.0.1";
306c307
< sha1_dir = "/opt/gxa/lbdb/sha1";

> sha1_dir = "/opt/gxa/lbdb";
310c311
< error_url = "http://192.168.1.50";

> error_url = "http://some-resource.url";
320c313
< lbr_prefix = "gxa-lb";

> # lbr_prefix = "giga-lbr";

Out listener path stays default: local TCP port 9191 (go for a UNIX socket if you will). We’ve changed
database-connection settings, signature directory path and the URL to re-direct to if the requested segment
is found unavailable. In that case, the full URL would also include parameters identifying the resource. For
instance, for

GET /channel/news2/20170823-16/3685452938.ts

The result would be:
HTTP 302 Moved temporarily
Location: http://192.168.1.50?origin=channel%2Fnews2%2F20170823-16%2F3685452938.ts

We’ve added lbr_prefix = "gxa-lb" to the load-balancer configuration. This prefix should be in URLs for
load-balanced requests, the URLs come from the playlist served by gxpm. We must now adjust the
gpm.item_url_prefix in the config:

< gpm.item_url_prefix = "http://192.168.1.103:8181/channel/";

Version 0.1 August 11, 2017 11

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

--
> gpm.item_url_prefix = "http://192.168.1.103:8181/gxa-lb/channel/";

Now gxpm should generate playlist items with the prefix, as below:

http://192.168.1.103:8181/gxa-lb/channel/news2/20170823-17/3998832938.ts
http://192.168.1.103:8181/gxa-lb/channel/news2/20170823-17/3999282938.ts
http://192.168.1.103:8181/gxa-lb/channel/news2/20170823-17/3999732938.ts

We should also update NginX config to allow re-direction to our FastCGI module. We add the following
section to nginx-gxa.conf (in /opt/gxa/etc):

location ˜ ˆ/gxa-lb/channel/.*/.*.ts$ {
include /etc/nginx/fastcgi_params;
fastcgi_pass 127.0.0.1:9191;

}

Now we can test-launch flb(1) on port 9191, to make sure the config is valid.

wi-ub1404:/opt/gxa/tmp$ sudo -u gigaplus flb -0

2017-08-23 13:58:19.808986 MSK 10448 (NRM) FLB flb (FastCGI load balancer) 0.1-4.27 (fea468-lb3) regular
2017-08-23 13:58:19.808997 MSK 10448 (INF) FLB Config read from [/etc/gigaplus.conf]
2017-08-23 13:58:19.809433 MSK 10448 (INF) FLB lbdb_connect: connected to 192.168.1.101:6379
2017-08-23 13:58:19.810209 MSK 10448 (NRM) FLB Listening on :9191
ˆC2017-08-23 13:58:33.073055 MSK 10448 (NRM) FLB Received QUIT-SIG(2), flb will exit.

Load-balance a channel between CP1 and LB1
We will now complete the setup for one channel - news2 (same as news3 but w/o shards). Segments will
be replicated from CP1 to LB1. Segment requests for this channel will be balanced by flb running on CP1.
When replicating, leaf nodes most be started first, so we set up on LBN1 (wi-deb8). Let’s not forget that
NginX will be serving data segments, so we’d need it installed (and configured) on each LBN. First we
install and configure NignX:

wi-deb8:/opt/gxa/etc$ cat nginx-gxa.conf
@(#) nginx server config
server {

listen 8181;
location /channel/ {

root /opt/gxa/;
autoindex on;

}
}
$
wi-deb8:/opt/gxa/channel/news2$ sudo apt-get install nginx
Setting up nginx-common (1.6.2-5+deb8u5) ...
Setting up nginx-full (1.6.2-5+deb8u5) ...
Setting up nginx (1.6.2-5+deb8u5) ...
Processing triggers for libc-bin (2.19-18+deb8u10) ...
Processing triggers for systemd (215-17+deb8u7) ...
$
wi-deb8:/opt/gxa/etc$ sudo ln -s /opt/gxa/etc/nginx-gxa.conf /etc/nginx/conf.d/nginx-gxa.conf
wi-deb8:/opt/gxa/etc$ sudo nginx -s reload
bsl45@wi-deb8:/opt/gxa/etc$ pgrep nginx | wc -l
5
$
wi-ub1404:/opt/gxa$ wget -O /dev/null ’http://192.168.1.105:8181/channel/news2/empty1’
--2017-08-23 16:06:51-- http://192.168.1.105:8181/channel/news2/empty1

Version 0.1 August 11, 2017 12

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

Connecting to 192.168.1.105:8181... connected.
HTTP request sent, awaiting response... 200 OK
Length: 0 [application/octet-stream]
Saving to: ’/dev/null’

[<=>] 0 --.-K/s in 0s

2017-08-23 16:06:51 (0.00 B/s) - ’/dev/null’ saved [0/0]
$
wi-deb8:/opt/gxa/etc$ sudo -u gigaplus rm /opt/gxa/channel/news2/empty1
$

As you see, we’ve installed/configured NginX and verified that it works with our config. Now we can
launch dwg on LBN1 and let it wait for the download tasks. Please note that dwg is the only module we
need on leaf hosts.

wi-deb8:/opt/gxa/channel$ sudo -u gigaplus mkdir -m 775 news2
wi-deb8:/opt/gxa/channel$ touch news2/REPLICA
$
bsl45@wi-deb8:/opt/gxa/tmp$ sudo ./gxa-channels.sh --dwg 1 --nopm start -
Starting dwg#1
dwg [13969] is running
$

Next, on CP1 (wi-ub1404) we start news2 channel and the request modules (gxws and gxng):

wi-ub1404:/opt/gxa/tmp$ sudo ./gxa-channels.sh --lb --dwg 1 start news2
[sudo] password for bsl45:
Starting dwg#1
dwg [23115] is running
Starting flb ...
flb [23123] is running
[gxpm] is not running.
Starting GXPM ...
gxpm [23131] is running
nohup: redirecting stderr to stdout
news2 [23138] is running
1 channel(s) started
Pausing for [5] seconds..
gxpm [23131] is running
----- channels -----
(ON) news2 [37 MB] uptime: 00d 00h:00m:05s

wi-ub1404:/opt/gxa/tmp$
wi-ub1404:/opt/gxa/tmp$ sudo ./gxa-requests.sh --nopin start 2
[GXWS] is not running.
GXPM [23131] is running
Starting GXWS ...
Starting GXNG1 ...
Starting GXNG2 ...
Pausing for 1 second(s).
GXWS [23317] STARTED
GXNG [23328] STARTED
GXNG [23340] STARTED
GXPM [23131] STARTED
$

Version 0.1 August 11, 2017 13

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

First we look at LBN1 to see if dwg is picking up download tasks:

2017-08-24 16:48:09.784244 MSK 13969 (NRM) uDl TASK-START [T0046] (0x7f96875b4010/idx=0) [http://192.168.1.103:8181/channel/news2/20170824-16/2834528346.ts]->[/opt/gxa/channel/news2/20170824-16/2834528346.ts-Dwag] length=0, expiry=1503583088 lid=[wi-ub1404-146]
2017-08-24 16:48:09.785609 MSK 13969 (INF) T0046 read_src_response: ready to download 1652144 bytes to [/opt/gxa/channel/news2/20170824-16/2834528346.ts-Dwag]
2017-08-24 16:48:09.788903 MSK 13969 (INF) T0046 add_lbdb_url: id=[channel/news2/20170824-16/2834528346.ts], url=[http://192.168.1.105:8181/channel/news2/20170824-16/2834528346.ts], expiry=1503583088
2017-08-24 16:48:09.789237 MSK 13969 (NRM) T0046 downloaded: 1652144 bytes, [http://192.168.1.103:8181/channel/news2/20170824-16/2834528346.ts] to [/opt/gxa/channel/news2/20170824-16/2834528346.ts]
2017-08-24 16:48:09.789324 MSK 13969 (NRM) DWG TASK-END [T0046] (0x7f96875b4010/idx=0) [http://192.168.1.103:8181/channel/news2/20170824-16/2834528346.ts]->[/opt/gxa/channel/news2/20170824-16/2834528346.ts] length=0, expiry=1503583088 lid=[wi-ub1404-146]
2017-08-24 16:48:14.923215 MSK 13969 (NRM) uDl TASK-START [T0047] (0x7f96875b4010/idx=0) [http://192.168.1.103:8181/channel/news2/20170824-16/2834978346.ts]->[/opt/gxa/channel/news2/20170824-16/2834978346.ts-Dwag] length=0, expiry=1503583093 lid=[wi-ub1404-147]
2017-08-24 16:48:14.926020 MSK 13969 (INF) T0047 read_src_response: ready to download 1862704 bytes to [/opt/gxa/channel/news2/20170824-16/2834978346.ts-Dwag]
2017-08-24 16:48:14.932606 MSK 13969 (INF) T0047 add_lbdb_url: id=[channel/news2/20170824-16/2834978346.ts], url=[http://192.168.1.105:8181/channel/news2/20170824-16/2834978346.ts], expiry=1503583093
2017-08-24 16:48:14.933132 MSK 13969 (NRM) T0047 downloaded: 1862704 bytes, [http://192.168.1.103:8181/channel/news2/20170824-16/2834978346.ts] to [/opt/gxa/channel/news2/20170824-16/2834978346.ts]
2017-08-24 16:48:14.933300 MSK 13969 (NRM) DWG TASK-END [T0047] (0x7f96875b4010/idx=0) [http://192.168.1.103:8181/channel/news2/20170824-16/2834978346.ts]->[/opt/gxa/channel/news2/20170824-16/2834978346.ts] length=0, expiry=1503583093 lid=[wi-ub1404-147]

We can also observe that CP1 dwg is also picking up tasks, but now downloading since files are local, just
updating LBDB:

2017-08-24 16:44:58.220605 MSK 23115 (INF) uDl add_lbdb_url: id=[channel/news2/20170824-16/2816978346.ts], url=[http://192.168.1.103:8181/channel/news2/20170824-16/2816978346.ts], expiry=1503582893
2017-08-24 16:45:03.390771 MSK 23115 (INF) uDl add_lbdb_url: id=[channel/news2/20170824-16/2817428346.ts], url=[http://192.168.1.103:8181/channel/news2/20170824-16/2817428346.ts], expiry=1503582898
2017-08-24 16:45:08.095992 MSK 23115 (INF) uDl add_lbdb_url: id=[channel/news2/20170824-16/2817878346.ts], url=[http://192.168.1.103:8181/channel/news2/20170824-16/2817878346.ts], expiry=1503582903
2017-08-24 16:45:13.219761 MSK 23115 (INF) uDl add_lbdb_url: id=[channel/news2/20170824-16/2818328346.ts], url=[http://192.168.1.103:8181/channel/news2/20170824-16/2818328346.ts], expiry=1503582908
2017-08-24 16:45:18.242066 MSK 23115 (INF) uDl add_lbdb_url: id=[channel/news2/20170824-16/2818778346.ts], url=[http://192.168.1.103:8181/channel/news2/20170824-16/2818778346.ts], expiry=1503582913

We start a video player on news2 and watch how requests get routed by flb in the log:

2017-08-24 16:44:20.247549 MSK 23123 (NRM) FLB Listening on :9191
2017-08-24 16:45:44.436927 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2820128346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-16/2820128346.ts]
2017-08-24 16:45:44.654632 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2820578346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-16/2820578346.ts]
2017-08-24 16:45:44.864475 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2821028346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-16/2821028346.ts]
2017-08-24 16:45:49.886095 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2821478346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-16/2821478346.ts]
2017-08-24 16:45:54.882847 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2821928346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-16/2821928346.ts]
2017-08-24 16:45:59.881699 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2822378346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-16/2822378346.ts]
2017-08-24 16:46:04.872757 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2822828346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-16/2822828346.ts]
2017-08-24 16:46:09.874338 MSK 23123 (INF) FLB run_app: [channel/news2/20170824-16/2823278346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-16/2823278346.ts]

As you can see, flb alternates between the two participating nodes: CP1 and LBN1.

This is the simplest kind of load balancing where leafs hosts are iterated in a round-robin fashion. More
complex ways, invloving numeric metrics will be covered later.

We’ve used one dwg per host for simplicity. A more complex set-up, with N>1 dwg instances balancing
download tasks on a multi-core server is possible, we will cover it later on.

Set up LBN2
We set up replication on one more host, which will become our LBN2. As before, licenses for dwg will be
needed, otherwise, the procedure is the same as with LB1. We will start LBN2 after CP1 and LB1 and see
how flb picks up its presence from LBDB. Then we’ll shut down news2 on LBN2 and see that flb would no
longer route requests to it.

Set up on LBN2 (wi-ub1604) is similar to what we did for LBN1, so there’s no need to cover it here. We
launch LBN1 first (so that it can catch ALL download tasks), then start CP1. If we started CP1, LBN1
would probably miss a few segments. Then we launch a video player for news2 and watch flb routing
entries in the log:

2017-08-24 19:08:28.814307 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3590618346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3590618346.ts]
2017-08-24 19:08:29.018511 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3591068346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3591068346.ts]
2017-08-24 19:08:29.243510 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3591518346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3591518346.ts]
2017-08-24 19:08:34.239602 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3591968346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3591968346.ts]
2017-08-24 19:08:34.444548 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3592418346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3592418346.ts]
2017-08-24 19:08:44.248617 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3592868346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3592868346.ts]
2017-08-24 19:08:44.350908 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3593318346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3593318346.ts]

Version 0.1 August 11, 2017 14

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

2

As expected, we alternate between CP1 and LBN1. In a bit we start LBN2 (wi-ub1604 = 192.168.1.173)
and see flb entries reflect the appearance of the new host:

2017-08-24 19:08:54.231491 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3593768346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3593768346.ts]
2017-08-24 19:08:59.239232 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3594218346.ts] redirecting to [http://192.168.1.173:8181/channel/news2/20170824-19/3594218346.ts]
2017-08-24 19:09:04.236200 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3594668346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3594668346.ts]
2017-08-24 19:09:04.412276 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3595118346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3595118346.ts]
2017-08-24 19:09:14.250755 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3595568346.ts] redirecting to [http://192.168.1.173:8181/channel/news2/20170824-19/3595568346.ts]
2017-08-24 19:09:19.234769 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3596018346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3596018346.ts]
2017-08-24 19:09:24.238210 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3596468346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3596468346.ts]
2017-08-24 19:09:29.233826 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3596918346.ts] redirecting to [http://192.168.1.173:8181/channel/news2/20170824-19/3596918346.ts]
2017-08-24 19:09:34.237161 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3597368346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3597368346.ts]
2017-08-24 19:09:34.426468 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3597818346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3597818346.ts]
2017-08-24 19:09:44.234789 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3598268346.ts] redirecting to [http://192.168.1.173:8181/channel/news2/20170824-19/3598268346.ts]

Then we shut down relication on LBN2:

wi-ub1604:/opt/gxa/tmp$ sudo ./gxa-channels.sh --dwg 1 --nopm shutdown -
Stopping [all]
<skip> news2
0 channels stopped.
Stopped dwg[5205]
[flb] is not running.
$

We see that flb dropped it too, no 192.168.1.173 from this point on:

2017-08-24 19:09:49.235374 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3598718346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3598718346.ts]
2017-08-24 19:09:54.240530 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3599168346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3599168346.ts]
2017-08-24 19:09:59.259531 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3599618346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3599618346.ts]
2017-08-24 19:10:04.250137 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3600068346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3600068346.ts]
2017-08-24 19:10:04.454696 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3600518346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3600518346.ts]
2017-08-24 19:10:14.240247 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3600968346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3600968346.ts]
2017-08-24 19:10:14.442211 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3601418346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3601418346.ts]
2017-08-24 19:10:24.250055 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3601868346.ts] redirecting to [http://192.168.1.103:8181/channel/news2/20170824-19/3601868346.ts]
2017-08-24 19:10:29.249214 MSK 23716 (INF) FLB run_app: [channel/news2/20170824-19/3602318346.ts] redirecting to [http://192.168.1.105:8181/channel/news2/20170824-19/3602318346.ts]

This concludes our goal of setting the simplest kind of load balancing on 2+ hosts. Read further for
advanced topics.

ADVANCED LOAD BALANCING
This chapter will cover using numeric sensors for load balancing (as vs. doing it round-robin style). We
will also set up multiple dwg instances on the same box and have them handle the same channels, balancing
download tasks between them.

Using numeric sensors
TODO TODO

Balancing download tasks between multiple dwg instances.
TODO TODO

AUTHORS
Pavel V. Cherenkov

Version 0.1 August 11, 2017 15

gxa-lb-setup(5) GigA+ load-balanced setup manual gxa-lb-setup(5)

SEE ALSO
gxa-setup(5),gigaplus(1),gxpm(1),vsm(1),vsm-scripts(1),gxseg(1),ncl(1)

Version 0.1 August 11, 2017 16

